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Abstract

We study the sources of corporate default clustering using data on industrial and

financial default timing in the U.S. between 1970 and 2012. The analysis is based on

a new reduced-form model of correlated default timing, in which the event arrival

rate is allowed to depend on past defaults and time-varying risk factors, some of

which cannot be measured. The likelihood estimates provide strong evidence of the

presence of several distinct sources of default clustering. One source is firms’ joint

exposure to a common macro-economic factor represented by the U.S. GDP growth

rate. Another is the influence on firms of a common latent factor with strong mean-

reverting behavior. A third is a contagion mechanism through which the default by

one firm has a direct impact on the health of other firms. We find that the impact

is governed by the debt outstanding at default and decays with time.
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1 Introduction

The U.S. economy has repeatedly su↵ered significant clusters of corporate default events.

Examples include the savings and loan crisis of the 1990s, the burst of the dotcom bubble

in 2001, and the financial crisis of 2007-09. Figure 1 illustrates these events. An under-

standing of the sources and the degree of default clustering is crucial for the measurement

of credit risk at financial institutions, the management of systemic financial risk, and the

rating and risk analysis of securities exposed to correlated corporate default risk, such as

collateralized debt obligations.

A major source of default clustering is the joint exposure of firms to common or corre-

lated risk factors such as interest rates, stock returns, and GDP growth.1 The movements

of these factors cause correlated changes in firms’ conditional default rates. For example,

strong economic growth often reduces the likelihood of default across the board. However,

Das, Du�e, Kapadia & Saita (2007) provide strong evidence that this channel on its own

cannot explain the degree of clustering found in the data. The literature discusses two

potential sources of the excess clustering. Several authors suggest information e↵ects. It

is possible that some relevant risk factors have not been identified or are simply unob-

servable.2 The uncertainty regarding the current values of these latent “frailty” factors,

which has an influence on the conditional default rates of the firms that depend on the

same frailties, is an additional source of clustering. Others make the case for contagion,

by which the default by one firm may have a direct impact on the conditional default

rates of other firms.3 Financial, legal, or business relationships between firms might act

as a conduit for the spread of risk. For instance, a default by the protection seller in a

credit swap could expose the buyer of protection and increase the default risk borne by

the protection buyer’s other counterparties.4 A related example is the collapse of Lehman

Brothers in 2008, which pushed some of Lehman’s creditors, trading partners and clients

into financial distress.5 Contagion is not limited to the financial sector. For example, the

default by major parts supplier Delphi in 2005 exposed General Motors, as indicated by

a jump in GM’s stock price and credit swap spreads.6

1Chava & Jarrow (2004), Campbell, Hilscher & Szilagyi (2008), Du�e, Saita & Wang (2007), Giesecke,
Longsta↵, Schaefer & Strebulaev (2011), Shumway (2001), and others analyze the significance of these
and other firm-specific and macro-economic factors for U.S. default timing.

2Theoretical and empirical models of frailty are provided by Collin-Dufresne, Goldstein & Helwege
(2009), Delloye, Fermanian & Sbai (2006), Du�e, Eckner, Horel & Saita (2009), Giesecke (2004), Koop-
man, Lucas & Monteiro (2008), Koopman, Lucas & Schwaab (2011), and others.

3Aı̈t-Sahalia, Cacho-Diaz & Laeven (2013), Berndt, Ritchken & Sun (2010), Collin-Dufresne, Goldstein
& Hugonnier (2004), Errais, Giesecke & Goldberg (2010), Jarrow & Yu (2001), Jorion & Zhang (2007),
Lang & Stulz (1992) and others study theoretical and empirical models of contagion.

4Jorion & Zhang (2007) and Stulz (2010) study these counterparty e↵ects.
5For empirical analyses of the aftermath of Lehman’s bankruptcy, see Aragon & Strahan (2012), Brun-

nermeier (2009), Chakrabarty & Zhang (2012), Dumontaux & Pop (2013), Fernando, May & Megginson
(2012), and others.

6Boone & Ivanov (2012) provide evidence of default spillover e↵ects on business partners.
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Figure 1: Annual number of defaults of U.S. firms with Moody’s rated debt. Source:

Moody’s Default Risk Service.

While both frailty and contagion are plausible potential sources of default clustering,

it has not been resolved whether they are indeed responsible for the excess clustering

not explained by firms’ exposure to common systematic risk factors. As discussed in

Section 1.1, several authors uncover evidence of the presence of a latent frailty factor

influencing U.S. non-financial default timing. However, they ignore the contagion channel

when measuring the impact of frailty. Others analyze non-financial contagion e↵ects, but

without controlling for the influence of common observable or latent factors. Failure to

account for all potential clustering sources when analyzing the data may lead to biased

estimates of the role of individual sources.

Using data on industrial and financial default timing in the U.S. between 1970 and

2012, this paper evaluates the joint significance of all potential clustering sources discussed

in the literature. We find strong evidence that firms’ joint exposure to a common macro-

economic factor represented by the U.S. GDP growth rate is a major source of clustering.

An additional significant source of clustering we distinguish in the data is the influence

of a common latent frailty factor which exhibits strong mean-reverting behavior. We also

find strong evidence of the importance of a contagion channel. Even after controlling

for the influence of observable and latent risk factors, a default event is found to have

a persistent impact on conditional default rates, with a half-life of about 3 months. A

default of a firm with $240 million of debt outstanding at default, the average amount

of debt outstanding at default in our data set, ramps up the conditional economy-wide

default rate by roughly 3 defaults per year.
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Our empirical results are based on a new reduced-form model of correlated default

risk, which addresses firms’ exposure to observable factors, a latent frailty factor, and fail-

ure events. The conditional rate of defaults is allowed to depend on time-varying factors

that are observable throughout the sample period, a latent frailty factor with square-root

dynamics that is not observable at all, and past failures. Our model significantly extends

the standard doubly-stochastic formulation widely used in theoretical and empirical anal-

yses of correlated default risk.7 In a doubly-stochastic formulation, default arrivals are

assumed to be conditionally Poisson given the paths of the observable risk factors, and

the only source of clustering is firms’ joint exposure to these factors. Our model also

extends a richer formulation with observable factors and a latent frailty factor, in which

arrivals are assumed to be conditionally Poisson given the paths of all factors. The doubly-

stochastic assumption imposes strong restrictions on the conditional distribution of events

since it precludes a direct influence of past failures on the conditional default rate. Be-

cause we do not make the doubly-stochastic assumption, we avoid such restrictions. By

allowing the conditional default rate to depend on past failures, our model of correlated

default risk generates a much richer set of distributions.

Without the doubly-stochastic assumption, model estimation and goodness-of-fit

testing are no longer standard. We employ a variant of the filtered likelihood estimation

developed by Giesecke & Schwenkler (2014) for point processes with incomplete data.

To rigorously evaluate the goodness-of-fit of an estimated model, we significantly extend

the time-change tests developed by Das et al. (2007) for doubly-stochastic models with

observable risk factors. Our tests facilitate the statistical assessment of models that are

not doubly-stochastic because of the influence of past defaults and latent frailty factors.

Unlike the tests developed by Das et al. (2007), our tests allow for the comparison of

models addressing di↵erent sources of default clustering.

We estimate our model and several nested alternatives, each of which addresses a

di↵erent set of clustering sources. We then evaluate each of these models using in- and

out-of-sample tests to understand the empirical significance of the potential clustering

sources. Martingale specification tests indicate the significance of the frailty and contagion

channels. We reject the null hypothesis of a correctly specified base model that addresses

only the clustering implied by firms’ joint exposure to the observable macro-economic risk

factors that prior studies have identified as predictors of U.S. defaults. Likelihood ratio

tests suggest that the contagion channel takes a somewhat more prominent role than

the frailty channel for explaining the default clusters in the data. The time-change tests

indicate that a model including the contagion channel outperforms, in terms of in-sample

fit, a model ignoring that channel. We find evidence that a model ignoring the contagion

channel tends to overstate the significance of the frailty channel.

Out-of-sample tests of forecast accuracy paint a similar picture. For each model al-

ternative, we compute the value at risk (VaR) of the year-ahead default forecast. We then

7See Chava & Jarrow (2004), Du�e & Garleanu (2001), Du�e et al. (2007), Feldhütter & Nielsen
(2012), Mortensen (2006), and others.
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perform a series of tests and compute forecast accuracy measures for these VaRs. We reject

the null hypothesis that the base model accurately predicts correlated default risk out-of-

sample. The base model, which addresses only the clustering implied by firms’ exposure

to the observable macro-economic risk factors identified by prior work, produces sluggish

forecasts that severely lag actual defaults. The models addressing additional clustering

sources perform much better at forecasting defaults. There are, however, important di↵er-

ences between the models. A model ignoring the contagion channel generates excessively

high and volatile VaR forecasts. A model ignoring the frailty channel tends to understate

the VaR. Only a model addressing all three sources of clustering provides accurate and

sensible out-of sample forecasts of correlated default risk in the U.S.

Our empirical findings have significant implications for the management of credit risk

at financial institutions. Most importantly, our results indicate that the doubly-stochastic

models of correlated default risk widely used to estimate risk capital in practice may un-

derstate the risk of large losses from defaults, especially during clustering periods such as

2001-02 and 2007-09. As a result, financial institutions may end up with capital bu↵ers

that are inadequate to withstand the large losses typically associated with default clus-

tering episodes. Our results suggest it is necessary to address the frailty and contagion

channels of clustering when measuring correlated default risk and estimating risk cap-

ital. Accounting for the e↵ects of frailty and contagion will lead to more accurate risk

assessments and more adequate capital bu↵ers.

The rest of this paper is organized as follows. The remainder of the introduction

discusses the related literature. Section 2 details the empirical data. Section 3 presents

a preliminary regression analysis of the data. The results of this analysis motivate the

features of our reduced-form model of default timing, which is developed in Section 4.

Section 5 outlines the estimation approach and discusses the parameter estimates for

several model alternatives. Section 6 tests the in-sample fit of these alternatives, while

Section 7 evaluates their out-of-sample forecast performance. Section 8 concludes. There

are several technical appendices.

1.1 Related literature

Using data on industrial defaults in the U.S. between 1980 and 2004, Du�e et al. (2007)

identify a set of observable firm-specific and macro-economic risk factors influencing the

timing of defaults in a doubly-stochastic model. Das et al. (2007) develop a time-change

test to evaluate the doubly-stochastic assumption that firms’ default times are correlated

only as implied by the dependence of firms’ conditional default rates on these factors.

They reject the joint hypothesis of well-specified default rates and the doubly-stochastic

assumption. Using a di↵erent set of risk factors, however, Lando & Nielsen (2010) can-

not reject this hypothesis. We provide additional evidence on this issue, focusing on the
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economy-wide default rate rather than firm-level rates.8 Based on a significantly longer

sample period that also covers the recent financial crisis and a larger event sample that also

includes failures of financial firms, we firmly reject the hypothesis that the economy-wide

default rate is influenced only by the macro-economic factors that the aforementioned

papers have identified.

Du�e et al. (2009) use data on U.S. industrial defaults between 1979 and 2004 to

estimate a model in which a firm-level default rate is influenced by a set of observable

firm-specific and macro-economic factors and a mean-reverting frailty. Their model is

doubly-stochastic with respect to observable and latent frailty risk factors. They find that

the frailty has a large impact on fitted default rates. In contrast to this study, we consider

the economy-wide rate of industrial and financial defaults and control for the contagion

channel when measuring the impact of frailty. We find that the role of frailty is overstated

when the contagion channel is ignored. Moreover, we find that the contagion channel is

highly significant even in the presence of frailty. Our findings suggest that both frailty

and contagion are significant clustering sources.

Lando & Nielsen (2010) use data on U.S. industrial defaults between 1982 and 2005

to fit a model in which a firm-level default rate is influenced by a set of observable firm-

specific and macro-economic factors as well as past defaults. They find that the influence of

past defaults is insignificant. In contrast to this study, we consider the economy-wide rate

of industrial and financial defaults and control for the presence of frailty when measuring

the impact of past defaults. We find strong evidence that the conditional default rate

depends on past failures, regardless of whether or not frailty is present.

Self-exciting event timing models that incorporate the dependence of the conditional

event rate on past events have been used by Aı̈t-Sahalia et al. (2013) for analyzing the

dynamics of asset returns with feedback jumps, by Bowsher (2007) and others for studying

the dynamics of order book data, and by Jarrow & Yu (2001) and others for pricing

corporate bonds and credit derivatives. However, in contrast to these prior studies, we

also model and estimate the dependence of the conditional event rate on a latent frailty

factor with square-root dynamics.

2 The data

The sample period is 1/1/1970 to 12/31/2012. Data on corporate (industrial and financial)

default timing in the U.S. are obtained from Moody’s Default Risk Service. The data cover

all defaults of firms domiciled in the U.S. with Moody’s rated debt. We also obtain data

on the debt outstanding at default from the same source.

We adopt Moody’s definition of a default event (see Hamilton (2005)). A “default” is

an event in any of the following categories: (1) a missed or delayed disbursement of interest

8Longsta↵ & Rajan (2008), Giesecke et al. (2011), and Giesecke, Longsta↵, Schaefer & Strebulaev
(2014) also pursue an economy-wide rather than a firm-level approach to default timing.
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or principal, including delayed payments made within a grace period; (2) bankruptcy

(Section 77, Chapter 10, Chapter 11, Chapter 7, Prepackaged Chapter 11), administration,

legal receivership, or other legal blocks to the timely payment of interest or principal; or

(3) a distressed exchange occurs where: (i) the issuer o↵ers debt holders a new security or

package of securities that amount to a diminished financial obligation; or (ii) the exchange

had the apparent purpose of helping the borrower avoid default. A repeated default by

the same issuer is included in the set of events if it was not within a year of the initial

event and the issuer’s rating was raised above Caa after the initial default. This treatment

of repeated defaults is consistent with that of Moody’s.

We observe a total of 2001 default events during the sample period. Figure 2 shows

the number of defaults by event category. The vast majority of defaults are due to missed

interest payments, Chapter 11 filings, or exchanges of distressed debt that resulted in losses

to bond investors. Figure 2 also indicates the number of events by sector. Most defaults

occur in the capital industry, followed by the consumer industry, technology, retail and

distribution, and media and publishing sectors. Figure 3 indicates the distribution of

the total amount of debt outstanding at default. About 95% of the events involve debt

outstanding at default of $500 million or less.

We study the influence on default timing of a number of explanatory variables (risk

factors). Time series of these variables are constructed from data obtained from the Fed-

eral Reserve Banks of New York and Saint Louis; Table 1 reports summary statistics. The

variables we consider include the quarterly growth rate of the U.S. industrial production

calculated from final products and nonindustrial supplies (observed monthly), the quar-

terly growth rate of the U.S. gross domestic product (observed quarterly), the trailing

1-year return of the S&P 500 index (observed daily), the trailing 1-year volatility of the

S&P 500 index (observed daily), the yield of the 3-month Treasury bill (observed daily),

the spread between the 10-year Treasury note and the 1-year Treasury bill (observed

daily), and the spread between the yields of BAA and AAA Moody’s rated corporate

bonds (observed weekly). Under di↵erent econometric assumptions and using di↵erent

default data sets, Chava & Jarrow (2004), Das et al. (2007), Du�e et al. (2007), Camp-

bell et al. (2008), Du�e et al. (2009), Lando & Nielsen (2010), Giesecke et al. (2011),

and others have found some or all of these variables to be significant predictors of U.S.

defaults. Unlike some of the aforementioned studies, we do not consider any firm-specific

variables because we are primarily interested in understanding the mechanisms generat-

ing clustered default events rather than individual defaults. Only systematic factors are

relevant in this context.

3 Regression analysis

We begin with an exploratory regression analysis of the number of defaults per month.

Our objective is to highlight several salient features of the default data. The findings will
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guide the formulation of a reduced-form model of event timing in Section 4.

Table 1 presents summary statistics for the time series of monthly defaults, total

amount of debt outstanding at default per month, and risk factors (sampled monthly).

On average, there are 3.88 defaults per month; the median is 3 and the standard devi-

ation is 4.42. The month with the most defaults is March 2009; it witnessed 29 events.

There is moderate negative correlation between monthly defaults and industrial produc-

tion growth, GDP growth, trailing S&P 500 returns, and Treasury yields. There is some

positive correlation between monthly defaults and S&P 500 volatility, slope of the yield

curve, and corporate yield spreads.

We run Poisson regressions of the monthly defaults on the explanatory variables.9

Table 2 reports the regression coe�cients and the corresponding t-statistics. All explana-

tory variables are significant at the 99% level. The R2 of the regression suggests that these

variables can explain only about 40% of the variation of monthly defaults. This and our

other findings discussed below are robust with respect to the choice of the aggregation

time window (e.g., weekly or quarterly defaults).

Figure 4 shows that the regression residuals are excessive during clustering episodes.

There is strong positive correlation of 75% between the residuals and monthly defaults.

Figure 5 indicates that the residuals are significantly positively autocorrelated. Also, the

constant coe�cient of the regression is large and highly significant. These observations

suggest the existence of latent explanatory variables (frailties) influencing default timing

beyond the variables we have already included as regressors.

A natural candidate for an additional explanatory variable is lagged defaults. Figure

6 indicates that monthly defaults are strongly autocorrelated; the lag one autocorrelation

is roughly 80%. Furthermore, the inclusion of lagged defaults in the regression allows us

to address a contagion channel, by which the default by a firm may adversely a↵ect that

firm’s creditors, counterparties, or business partners. Several studies provide evidence sup-

porting the existence of contagion e↵ects. For example, Jorion & Zhang (2007) document

contagion e↵ects using CDS data, Collin-Dufresne et al. (2009) study such e↵ects using

bond return data, and Lang & Stulz (1992) examine intra-industry contagion e↵ects.

The regression coe�cients and t-statistics, reported in Table 2, suggest that lag one

monthly defaults and lag one monthly debt outstanding at default are highly significant

predictors of future defaults, after controlling for the influence of the explanatory variables

identified earlier. Including the lagged default data improves the R2 to 0.56 from 0.40,

an improvement that is significant at the 99.9% level according to a likelihood ratio test.

Moreover, including the lagged default data reduces the correlation between regression

residuals and monthly defaults from 74% to 62% (see Figure 4). It also reduces the auto-

correlation of the regression residuals; the autocorrelation is now insignificant for the first

order (see Figure 5). Despite these substantial improvements, the features of the residuals

still suggest the presence of latent frailty variables, even if higher order lagged default

9We use Poisson regressions rather than standard linear regressions because the default data are
integer-valued. See Cameron & Trivedi (1998) and Winkelmann (2008) for details on Poisson regressions.
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data are included in the regression.

4 Reduced-form model

Guided by the results of the regression analysis, we formulate a reduced-form model of

correlated default timing. Reduced-form models are widely used; see Berndt et al. (2010),

Chava & Jarrow (2004), Das et al. (2007), Du�e et al. (2007), Du�e et al. (2009), Jarrow

& Yu (2001), Lando & Nielsen (2010), Longsta↵ & Rajan (2008), and many others. Unlike

a regression model, a reduced-form model addresses the exact timing of events. It allows us

to capture the potentially significant e↵ects of defaults within a month and the substantial

intra-month time-series variation of some of the explanatory variables.

The defaults in the sample arrive at an intensity that measures the conditional mean

arrival rate of events per year (see Appendix A for details). To address the potential

sources of default clustering, we allow the intensity to depend on the explanatory variables

X1, . . . , Xd discussed in Section 2, a latent frailty variable Z, and past defaults. More

precisely, if Z were observable, the intensity at time t would be of the form

�t = exp

✓
a0 +

dX

i=1

aiXi,t

◆
+ Yt + Zt, (1)

where Y models the influence of past defaults on the intensity, and a = (a0, a1, . . . , ad)

is a vector of coe�cients to be estimated. The intensity at t given the actually available

information is the posterior mean of �t; details are in Appendix C.

The first term in (1) captures firms’ exposure to the common risk factor X =

(X1, . . . , Xd). As in Chava & Jarrow (2004), Das et al. (2007), Du�e et al. (2007) and

other articles, this term takes the classical proportional hazards form of Cox (1972). When

Y and Z are positive, this formulation ensures that the intensity is positive for any value

of the factor vector X. Moreover, when Y = 0 and Z = 0, the influence of the risk factor

Xi is multiplicative and the parameter ai is a proportionality factor. If Xi increases by

one unit, then the intensity increases by a factor of eai � 1.

The results of the regression analysis in Section 3 suggest the existence of a latent

frailty risk factor influencing the timing of defaults in our sample. The term Z in (1)

models this influence. We propose a standard mean-reverting Cox-Ingersoll-Ross (CIR)

model for the dynamics of the latent factor Z:

dZt = k(z � Zt)dt+ �
p

ZtdWt, (2)

for z, k, � � 0 and 2kz � �2.10 Here, W is a standard Brownian motion independent of X,

and Z is initialized at its stationary gamma distribution with shape parameter 2kz
�2 and

scale parameter �2

2k . The choice of a mean-reverting model is motivated by the results of

10We have considered alternative parameterizations of the model (2), including one with unit volatility
but Z in (1) replaced by cZ. The results for these alternatives are very similar to those for (2).
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Du�e et al. (2009), who find strong evidence for the existence of a mean-reverting frailty

influencing U.S. non-financial default timing between 1979 and 2004.

The results of the regression analysis also highlight the dependence of default rates

on past failures, consistent with a number of studies analyzing contagion e↵ects.11 The

term Y in (1) addresses this dependence in our reduced-form formulation. We propose

the classical self-exciting specification of Hawkes (1971):

Yt = b
X

n:Tnt

e�(t�Tn)f(Un) (3)

where b > 0 and  > 0 are parameters, Tn is the time of the nth default in the sample, Un

is the debt outstanding at the nth default (measured in million USD), and the function

f(u) = max(0, log u) specifies the impact of an event on the intensity.12 Upon a default,

the intensity is ramped up proportionally to the logarithm of the total debt outstanding at

default. The impact fades away with time at rate . This formulation captures the positive

autocorrelation of monthly defaults found in Section 3, which decreases with increasing

lag. It also captures the significant positive dependence between monthly defaults and lag

one debt outstanding at default per month found in the regression analysis.

5 Likelihood estimation

We estimate the parameter ✓ = (a, b,, �, k, z) governing the reduced-form model (1) by

the method of maximum likelihood. Since the frailty Z influencing the intensity cannot

be observed, the likelihood problem is not standard unless z = � = 0. We implement a

variant of the filtered likelihood estimation developed by Giesecke & Schwenkler (2014);

see Appendix B for details. The likelihood is the posterior mean of the complete-data

likelihood given the observed data, which include the default dates, the debts outstanding

at defaults, and time series of the explanatory variables X1, . . . , Xd discussed in Section

2.13 The posterior mean is evaluated using a quadrature method. This approach eliminates

the need to perform Monte Carlo simulations of the frailty path over the 43-year sample

period, which would be computationally burdensome. It also avoids the loss of estimation

e�ciency associated with the simulated expectation-maximization (EM) algorithm often

used for this type of problem.14 The resulting likelihood estimators are consistent and

asymptotically normal as the sample period grows (see Appendix B.3).

11See, for example, Berndt et al. (2010), Chakrabarty & Zhang (2012), Collin-Dufresne et al. (2004),
Errais et al. (2010), Jarrow & Yu (2001), Jorion & Zhang (2007), and Lang & Stulz (1992).

12We have experimented with several alternative models of f but found the specification presented here
to be the most significant one.

13Following the empirical default timing literature, we interpolate the discrete observations of the
explanatory variables to obtain continuous time series.

14Du�e et al. (2009), Koopman et al. (2008), Koopman et al. (2011), and others use EM algorithms
to estimate the influence of frailty on default timing.

10



We estimate the model (1) and three nested alternatives, each of which addresses

a di↵erent set of clustering sources. Table 3 summarizes these models. The unrestricted

model, for which b, z, � > 0, addresses the clustering due to firms’ exposure to observable

and frailty factors as well as to the clustering generated by the contagion channel. A model

for which b = 0 ignores the contagion channel. A model for which z = � = 0 ignores the

frailty channel. A base model for which b = z = � = 0 ignores both the contagion

channel and the frailty channel; it captures only the clustering implied by firms’ joint

dependence on the observable risk factor X. Table 4 reports the parameter estimates

for the di↵erent models along with the corresponding asymptotic standard errors and

maximum log-likelihoods. We summarize our findings below.

The self-exciting term Y is highly significant. As suggested by the regression analysis

in Section 3, past defaults appear to be significant predictors of future defaults, after

controlling for the impact of observable and frailty factors. A default has a persistent

impact on the intensity, with a half-life of about 3 months. A default of a firm with $240

million of debt outstanding at default, the average amount of debt outstanding at default

in our data set, ramps up the intensity by roughly 3 defaults per year. The fitted values

of the parameters b and  governing the term Y are very similar to the fitted values in

the model ignoring the frailty channel. This observation suggests that the term Y has

been appropriately identified. In particular, the role of the term Y is not overstated at

the expense of the frailty term.

The latent frailty factor Z exhibits significant mean-reverting behavior. The fitted

mean-reversion parameters k and z di↵er by orders of magnitude from those in the model

ignoring contagion. In the unrestricted model, the fitted frailty quickly reverts to a very

low but significant level. In the restricted model, the fitted frailty is very persistent and

has a high reversion level. This indicates that a model ignoring the contagion channel

may overstate the role of frailty.

Among the explanatory variables, only GDP growth has a significant influence on

the intensity. The sensitivity of the intensity to this factor is negative, consistent with

the intuition that strong economic growth reduces the likelihood of defaults. Moreover,

the fitted value of the sensitivity parameter is similar to the values estimated for the

restricted models (if these values are significant), suggesting that the impact of GDP

growth on the intensity is not overstated at the expense of other risk factors or the frailty

and self-exciting terms.

Unlike Du�e et al. (2007), Du�e et al. (2009), and Lando & Nielsen (2010), we do

not find the S&P 500 return and the industrial production growth to be significant risk

factors. This may be due to the fact that our data set covers a much longer sample pe-

riod, beginning in 1970 and extending well beyond the financial crisis. Unlike the earlier

studies, our event sample also includes the failures of financial firms, which were relatively

numerous during the savings and loan crisis. Finally, we control for the frailty and conta-

gion channels of clustering when measuring the impact of the explanatory variables. The

aforementioned papers control for only one of these channels, or neither.
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Also the corporate bond yield spread is found to be insignificant. This finding com-

plements previous results by Collin-Dufresne, Goldstein & Martin (2001), Giesecke et al.

(2011), and Gilchrist & Zakraǰsek (2012) on the connection between credit spreads and

the business cycle. It provides additional evidence that credit spreads contain little infor-

mation about actual default probabilities.

6 In-sample analysis

We perform a series of tests to evaluate the in-sample fit of the nested model alternatives

we have estimated. Our goal is to better understand the roles that the frailty and contagion

channels play for the default clusters in the data.

6.1 Fitted intensities

Figure 7 compares the fitted intensity to the default data. The fitted intensity at time

t is given by the fitted posterior mean of �t given the data observed to time t. Without

frailty (z = � = 0), the posterior mean, ht, is equal to �t. With frailty, the computation

of ht is a filtering problem; see Appendix C for details.

The base model does a relatively poor job at explaining the default clusters in the

data. It lags clusters and significantly overstates the arrival rates during the first quarter

of the sample period and during the recent financial crisis. The richer models capture the

substantial time-variation of realized arrival rates much better. The models that address

the contagion channel match the low arrival rates during the early part of the sample

better than the models that ignore that channel.

6.2 Martingale specification tests

Next, we formally test model specification. Let Nt be the number of defaults observed to

time t. The variables {Mt : t � 0} given by

Mt = Nt �
Z t

0

hsds, (4)

where hs is the posterior mean of �s at time s, form a martingale with respect to the

observable data. We consider the sequence of increments of the fitted {Mt : t � 0}
between consecutive defaults. Under the null hypothesis of a correctly specified model,

this sequence is a martingale di↵erence sequence.

We run the martingale di↵erence tests described in Charles, Darné & Kim (2011).

The results of these tests are reported in Table 5. We reject the null hypothesis of a

correctly specified base model. We cannot reject the null for any of the three richer models,

indicating the importance of going beyond the base model and addressing the frailty and

contagion channels of default clustering.
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6.3 Likelihood ratio tests

Using likelihood ratio tests, we measure the improvement in fit achieved by including the

frailty and the self-exciting terms. The results of these tests, reported in Table 6, provide

strong evidence in favor of including both terms. Relative to the base model, adding either

the frailty term or the self-exciting term leads to a significant improvement in model fit.

However, the inclusion of the self-exciting term leads to a bigger improvement in the

test statistic than the inclusion of the frailty term. Relative to the model that includes

observable risk factors and frailty, the inclusion of self-exciting term as a third source of

clustering yields further improvements. The inclusion of the frailty term in the model with

observable risk factors and the contagion term does not significantly improve model fit,

however. These tests suggest that even after controlling for frailty, the self-exciting term

representing the contagion channel plays a prominent role.

6.4 Time-change tests

To further analyze the empirical significance of the frailty and contagion channels, we

formally test the goodness-of-fit of our model alternatives. An important result of Das

et al. (2007) states that if there are no latent frailty factors and defaults are doubly-

stochastic,15 then the default count Nt can be transformed into a standard Poisson process

by a change of time given by the cumulative intensity. This result allows one to evaluate

the goodness-of-fit of doubly-stochastic models with observable risk factors by testing the

Poisson property of the time-scaled default times.

Our model violates the doubly-stochastic hypothesis because it addresses the frailty

and contagion channels. Therefore, the tests of Das et al. (2007) do not apply. We gener-

alize the time-change result of Das et al. (2007) in Proposition D.1 in Appendix D. Our

result also covers models in which the doubly-stochastic assumption is violated because

of the presence of a latent frailty factor or a self-exciting term. We show that the de-

fault count Nt can always be transformed into a standard Poisson process by a change of

time given by the cumulative posterior mean ht of the intensity. This result allows us to

compare models addressing di↵erent sources of default clustering by testing the Poisson

property of the time-scaled default times.

We follow Das et al. (2007) and begin by testing the Poisson property of defaults

per bin. For a bin of size w > 0, we construct an increasing sequence of times twi so that

the cumulative posterior intensity mean ht between two consecutive times is equal to w.

Formally,
R twi
twi�1

hsds = w for each i. Let Pw
i be the number of defaults between twi�1 and twi .

Proposition D.1 implies that the Pw
i are independent samples from a Poisson distribution

with parameter w. We test this property for di↵erent bin sizes w.

15A model with observable risk factors is doubly-stochastic if default arrivals are conditionally Poisson
given the paths of the factors. A doubly-stochastic model addresses only the default correlation caused
by firms’ joint exposure to the risk factors.
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Table 7 reports the first four empirical moments of the binned event counts Pw
i for

each of our model alternatives and a range of bin sizes. It also reports the moments

of the corresponding theoretical Poisson distributions. We observe that the base model

tends to generate binned event counts that are overdispersed, with the variances of the

Pw
i exceeding the theoretical counterparts. Overdispersed counts are a sign of missing

explanatory factors (see Cameron & Trivedi (1998)). This is consistent with the rejection

of the base model by the martingale specification tests (Section 6.2). The model including

frailty tends to generate underdispersed binned event counts. Underdispersion is a sign

of positive correlation between inter-default times (see Cameron & Trivedi (1998)). This

observation complements the analysis of the maximum likelihood estimates in Section 5:

it indicates that a model ignoring the contagion channel may in fact overstate the role

of frailty. The models including the frailty channel and the contagion channel generate

binned event counts whose moments closely match the theoretical ones.

Table 8 reports the p-values of several tests of the i.i.d. Poisson property of the

binned event counts (see Karlis & Xekalaki (2000) and Das et al. (2007)). The Pottho↵-

Whittinghill-Bohning test evaluates the moments and the Kocherlakota-Kocherlakota test

evaluates the generating function of the Pw
i . The other tests examine the independence,

dispersion, tail properties, and distribution of the Pw
i .

The base model fails almost all of these tests at high significance levels. It generates

correlated binned event counts and does not match the corresponding Poisson distri-

butions. We firmly reject the null hypothesis that the intensity is influenced only by the

common factors that prior studies have identified as significant predictors of U.S. defaults.

The model including the frailty channel but ignoring the contagion channel fails the

Pottho↵-Whittinghill-Bohning tests of the moments of the Poisson distribution. It also

fails a chi-squared goodness-of-fit test. The unrestricted model addressing all clustering

channels fails only few tests, often at low significance levels. All things considered, the

data suggest that the contagion channel is a prominent source of default clustering, even

after controlling for the frailty channel.

7 Out-of-sample analysis

To develop additional insight into the distinctive properties of alternative clustering

sources, we finally evaluate the out-of-sample forecast accuracy of our models. We use

Monte Carlo simulation to generate the conditional distribution of the number of defaults

in the year ahead, given a model fitted to the data available at the beginning of the year.

Our approach, detailed in Appendix E, eliminates the need to simulate the paths of the

frailty variable during the forecast period. It is computationally e�cient and generates

forecast distributions with small variance.

Figure 8 contrasts the forecast distribution with the realized number of defaults, for

each year between 1991 and 2012, and for each alternative model. We observe that the
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base model lags default clusters, which complements our findings from the in-sample anal-

ysis. It fails to predict the clusters associated with the burst of the dotcom bubble and the

financial crisis. The model including frailty but ignoring the contagion channel performs

better at predicting these clustering events. However, it generates forecast distributions

with excessively heavy tails. This may be a result of the underdispersion suggested by

the moments of the binned default count in Table 7. Moreover, the mean of the forecast

distribution shows very little variation through the test period. Thus, if the mean were

used as a point forecast, then the forecast would change little every year, despite the sig-

nificant variation of observed default rates. The model that includes the contagion channel

but ignores the frailty channel generates much more concentrated forecast distributions.

The forecast mean matches the realized number of defaults quite well. The unrestricted

model, which addresses all clustering sources, performs better still, producing forecast

distributions with lower variance during the first third of the test period.

To test forecast accuracy, we consider the 99% value at risk (VaR) of the forecast

distribution, a standard measure of portfolio credit risk. For a given model, we evaluate

the sequence of “hit” indicators associated with violations of the VaR in di↵erent periods.

Under the null, these indicators are independent draws from a Bernoulli distribution

with success probability (1 � 0.99) = 0.01. Table 9 reports the violation rates and the

p-values of an unconditional coverage test due to Kupiec (1995), which tests whether the

actual violation rate is significantly di↵erent from 0.01. We also report the p-values of

an independence test due to Christo↵ersen (1998), a combined test of independence and

Bernoulli distribution against a Markov chain alternative due to Christo↵ersen (1998),

and the out-of-sample dynamic quantile test of Engle & Manganelli (2004). The dynamic

quantile test examines if there is significant correlation between the hit indicators and the

level of the VaR. With a violation rate of 0/22, the model including the frailty channel

but ignoring the contagion channel outperforms all other models according to these tests.

With a violation rate of 1/22, the unrestricted model comes in second. The base model

is rejected by these tests due its sluggishness. The model including the contagion channel

but ignoring the frailty channel is rejected because its VaR forecasts are too low.

The tests of the hit indicators may unduly favor the frailty model because it generates

forecast distributions with excessively heavy tails, and VaR forecasts that are excessively

large. If one were to estimate risk capital according to the VaR, one would end up holding

too much capital relative to the actual risk. While one would be covered in most situations,

scarce risk capital would be wasted. To address this issue, we consider the mean relative

bias and the root mean square relative bias of the VaR forecasts (see Hendricks (1996)).

The former is the percentage deviation of a forecast from the average forecast of all

models, averaged over all forecast periods. The latter accounts for the standard deviation

of the former. The outcomes of these measures, reported in Table 9, indicate that the

frailty model does indeed tend to overstate the VaR and to produce the largest forecast

volatility. The unrestricted model, which addresses all clustering sources, generates the

VaR forecasts with the least bias and volatility.
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All things considered, the results of the out-of-sample tests indicate that the frailty

and self-exciting terms are equally important for obtaining accurate forecasts of correlated

default risk. A default timing model in which the intensity is influenced only by common

risk factors does not accurately predict correlated default risk out-of-sample. A model

including frailty but ignoring the contagion channel tends to overstate correlated default

risk, while a model addressing the contagion channel but ignoring frailty tends to under-

state it. The unrestricted model provides the most balanced and accurate out-of-sample

forecasts of correlated default risk.

8 Concluding remarks

The U.S. financial markets have witnessed several significant clusters of corporate defaults

over the past few decades. Using data on industrial and financial default timing in the

U.S. between 1970 and 2012, we find strong evidence of the presence of several sources of

default clustering. One source is firms’ joint exposure to a common macro-economic risk

factor that is represented by the U.S. GDP growth rate. Another source is the influence

on firms of a common unobservable frailty risk factor with mean-reverting behavior. A

third source is a contagion mechanism through which the default by one firm has a direct

impact on the health of other firms. The impact is governed by the debt outstanding at

default and decays with time.

The empirical analysis employs a new reduced-form model of correlated default tim-

ing. We allow the conditional rate of defaults in the sample to depend on dynamic factors

that are observable throughout the sample period, a latent factor with square-root dy-

namics, and past failures. Goodness-of-fit tests are used to evaluate this model and its

nested alternatives, and to establish the empirical significance of the di↵erent potential

sources of default clustering.

Our findings have important implications for the management of credit risk at fi-

nancial institutions. The models widely used to estimate risk capital address only the

default clustering due to firms’ joint exposure to observable risk factors. We find strong

evidence however that a model ignoring the frailty and contagion channels understates

the risk of large default losses. This indicates that banks using conventional models to

estimate risk capital might end up holding too little capital to withstand the large losses

induced by default clusters like the one generated by the last financial crisis. Our results

suggest to estimate risk capital using an approach that also addresses the presence of a

mean-reverting frailty factor influencing firms, and the impact of past failures on default

rates. We find that such an approach generates the most accurate out-of-sample forecasts

of correlated default risk.

An understanding of the sources of default clustering is also essential for the rating

and risk analysis of securities that are exposed to correlated default risk, such as collat-

eralized debt obligations. Our findings suggest to account for the impact of frailty and
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contagion when studying such securities.

Our model can be applied to other situations in which a common unobservable factor

and a contagion mechanism are suspected to play an important role in the timing of events;

for example, mortgage prepayments and defaults, order arrivals in a limit order book, and

jumps in asset prices.

A Reduced-form model

This appendix provides some technical details regarding our reduced-form model of default

timing (Section 4). The default data is a realization of a marked point process (Tn, Un)n�1

defined on a complete probability space (⌦,F ,P) equipped with an information filtration

F = (Ft)t�0 satisfying the usual conditions of right-continuity and completeness (see

Protter (2004)). That is, (Tn)n�1 is an increasing sequence of default stopping times

tending to1 and (Un)n�1 is a sequence of FTn-measurable random variables that represent

the debt outstanding at default. We assume that there exists a positive process � such

that the variables Nt �
R t

0 �sds form a local martingale, where Nt =
P

n�1 1{Tnt}. The

process � is the intensity of N . We have that E[Nt+� �Nt | Ft] ⇡ �t�t for small � > 0,

suggesting the interpretation of a conditional mean arrival rate for �.

B Maximum likelihood estimation

Due to the presence of the frailty factor Z, the problem of estimating the parameter

✓ = (a, b,, �, k, z) of the reduced-form model (1) is not standard unless z = � = 0. We

implement a variant of the filtered likelihood estimation method developed by Giesecke &

Schwenkler (2014) for point process models with incomplete data. This appendix provides

some details.

B.1 The likelihood function

Let Dt denote the data available at time t. These include the default data {Tn, Un : n 
Nt} and the (interpolated) covariate data {Xs : s  t}. Let [0, ⌧ ] be the sample period.

The likelihood function L⌧ (✓) is the Radon-Nikodym density of the law of the data D⌧

relative to its true distribution; see Section 3.1 of Giesecke & Schwenkler (2014) for a

more precise statement. A maximum likelihood estimator (MLE) is a maximizer of the

likelihood function. To compute the likelihood, let

M⌧ = exp

✓X

n�1

log(�Tn�)1{Tn⌧} �
Z ⌧

0

(�s � 1)ds

◆
, (5)
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and assume that E[1/M⌧ ] = 1. We define an equivalent measure P⇤ on the �-field F⌧ with

Radon-Nikodym density
dP⇤

dP
=

1

M⌧

.

Proposition 3.1 of Giesecke & Schwenkler (2014) states that

L⌧ (✓) / E⇤ [M⌧ | D⌧ ] . (6)

The likelihood function (6) depends on the parameter ✓ because M⌧ is a path func-

tional of the intensity � = ea·(1,X) + Y + Z. If z = � = 0, the data set D⌧ contains all

relevant information to evaluate M⌧ so the likelihood function simplifies to L⌧ (✓) / M⌧ .

If z, � > 0, then the conditional expectation (6) is not trivial because the data D⌧ do not

include any observations of the frailty Z. The conditional expectation (6) is taken with

respect to the conditional P⇤-law of the frailty given the data D⌧ . Girsanov’s and Lévy’s

theorems imply that the Brownian motion W driving the frailty Z remains a Brownian

motion under P⇤. As a result, Z follows the CIR process (2) under P⇤. Furthermore, Gir-

sanov’s and Watanabe’s theorems imply that N is a standard Poisson process under P⇤.

Therefore, N is independent of the frailty Z under P⇤. Also, Z is independent of X by

assumption. Thus, the conditional P⇤-law of Z given D⌧ is governed by (k, z, �).

B.2 Approximate likelihood function

There is no closed-form expression for the likelihood (6) if � > 0 and z > 0. Giesecke &

Schwenkler (2014) propose to approximate the likelihood using a rectangular quadrature

method. We will use a slightly modified approximation based on a trapezoidal quadrature

method that exploits the fact that our frailty Z follows a CIR process. This approxima-

tion does not interpolate the path of the frailty. Therefore, it is more accurate and less

susceptible to the implementation choice.

Since Z follows a CIR process under P⇤, a key result of Broadie & Kaya (2006) implies

that for times 0  t1 < t2  ⌧ and points z1, z2 2 R+,

�(z1, t1; z2, t2) = E⇤

exp

✓
�
Z t2

t1

�udu

◆ ���D⌧ , Zt1 = z1, Zt2 = z2

�

= �(z1, t1; z2, t2) exp

✓
�
Z t2

t1

�
ea·(1,Xu) + Yu

�
du

◆
, (7)

where

�(z1, t1; z2, t2) =
Iq
�p

z1z2
4⇣e�0.5⇣�

1�e�⇣�

�

Iq
�p

z1z2
4ke�0.5k�

1�e�k�

�
⇣e�0.5(⇣�k)�(1� e�k�)

k(1� e�⇣�)
e
(z1+z2)

�
k(1+e�k�)

1�e�k� � ⇣(1+e�⇣�)

1�e�⇣�

�

for� = t2�t1, ⇣ =
p
k2 + 2c2, and Iq the modified Bessel function of the first kind of order

q = 2kz
c2
� 1. An application of the law of iterated expectations leads to a reformulation of

the likelihood in terms of a product of terms as in (7).
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Proposition B.1. For t  ⌧ and a function u on R+ such that u(�t) is integrable,

E⇤ [u(�t)Mt | Dt] = etE⇤

"
u(�t)�(ZTN⌧

, TN⌧ ;Z⌧ , ⌧)
N⌧Y

n=1

�Tn��(ZTn�1 , Tn�1;ZTn , Tn)

����� Dt

#
.

Proof. Letting ⇧t = u(�t) exp
⇣PNt

n=1 log(�Tn�)
⌘
, we calculate

E⇤ [u(�t)Mt | Dt] exp(�t)

= E⇤

"
⇧t exp

✓
�
Z TNt

0

�udu

◆
E⇤

"
exp

 
�
Z t

TNt

�udu

!����� Dt, (Zu)uTNt
, Zt

# ����� Dt

#

= E⇤

⇧t exp

✓
�
Z TNt

0

�udu

◆
�(ZTNt

, TNt ;Zt, t)

���� Dt

�
. (8)

Line (8) uses the fact that, by Girsanov’s theorem, the change of measure induced by M⌧

does not a↵ect the law of Z. Consequently, Z is a Markov process under P⇤. We iterate

to complete the proof.

Proposition B.1 allows us to approximate the likelihood (6) using a trapezoidal

quadrature rule that does not interpolate the path of the frailty Z. Algorithm B.2 sum-

marizes the numerical scheme for terms of the form E⇤ [u(�⌧ )M⌧ | D⌧ ]; the likelihood is

given by u ⌘ 1. Convergence of the scheme as the discretization becomes finer follows

along the lines of Theorem 4.1 of Giesecke & Schwenkler (2014). Note that the transition

law of Z is non-central chi-squared since Z follows a CIR process.

Algorithm B.2. Fix a state-space discretization {z1, . . . , zm} for the frailty Z. Let Ai be

a neighborhood of zi. Define the terms

F n(k, l) = eTn�Tn�1
�
ea·(1,XTn�) + YTn� + czk

�
�(zl, Tn�1; z

k, Tn),

pn(k, l) = P⇤ ⇥ZTn 2 Ak
��D⌧ , ZTn�1 = zl

⇤
,

for 1  k, l  m and 1  n  N⌧ . In addition, set TN⌧+1 = ⌧ and

FN⌧+1(k, l) = e⌧�TN⌧ u
�
ea·(1,X⌧ ) + Y⌧ + czk

�
�(zl, TN⌧ ; z

k, ⌧)

pN⌧+1(k, l) = P⇤ ⇥Z⌧ 2 Ak
��D⌧ , ZTN⌧

= zl
⇤
,

For a given ✓ 2 ⇥, do:

(1) Initialization: Let ⇠ = (⇠(1), . . . , ⇠(m)) be an m-dimensional vector such that ⇠(i) =

1 if y 2 Ai and otherwise ⇠(i) = 0.

(2) Iteration: For n = 1, . . . , N⌧ + 1 do

(a) Define the m⇥m-matrix Q̂j with elements F n(k, l)pn(k, l)

(b) Update the vector ⇠ to ⇠  Q̂j · ⇠
(3) Termination: Compute an approximation of E⇤ [u(�⌧ )M⌧ | D⌧ ] as

Pm
i=1 ⇠(i).
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B.3 Asymptotic properties

Assume that the true parameter ✓0 lies in the interior of the parameter space ⇥. If

z = � = 0, we can compute an MLE ✓̂⌧ analytically and Theorem 3.2 of Giesecke &

Schwenkler (2014) implies that the MLE is consistent.16 Under regularity and identifi-

ability conditions, Theorem 3.3 of Giesecke & Schwenkler (2014) states that ✓̂⌧ will be

asymptotically normal so that
p
⌧(✓̂⌧ � ✓0) converges in distribution to a multivariate

normal distribution with mean 0 and variance-covariance matrix

⌃ =

✓
� lim

⌧!1

1

⌧
r2 logL⌧ (✓0)

◆�1

.

We use the following finite-horizon approximation of ⌃:

⌃̂⌧ =

✓
�1

⌧
r2 logL⌧ (✓0)

◆�1

.

If � > 0 and z > 0, the likelihood is approximated using Algorithm B.2. Define

LA
⌧ (✓) as the approximate likelihood computed by Algorithm B.2. An approximate MLE

✓̂A⌧ maximizes the approximate likelihood function:

✓̂A⌧ 2 argmax
✓2⇥

LA
⌧ (✓).

Proposition 4.3 of Giesecke & Schwenkler (2014) implies that, under mild technical con-

ditions, the approximate MLE ✓̂A⌧ will be consistent and asymptotically normal as the

sample period grows and the discretization becomes finer. A finite-horizon approximation

of the asymptotic variance-covariance matrix is given by

⌃̂A
⌧ =

✓
�1

⌧
r2 logLA

⌧ (✓̂
A
⌧ )

◆�1

.

B.4 Implementation

The numerical algorithm and approximate likelihood maximization are implemented in R

and run on an eight-core 32GB Sun blade system. We use the Nelder-Mead optimization

method to locate the maximizers of the likelihood function. To address the issue of local

optima, we run a number of optimizations with random initial values. In order to deal

with very small or very large values of the intensity and the parameters, we scale the time

unit to one week.
16Condition (A3) of Giesecke & Schwenkler (2014) is irrelevant in our setting because the parameters

driving the explanatory factor X can be estimated separately from the default parameter ✓.
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C Posterior mean of intensity

Since the data do not include observations of the frailty Z, the intensity �t cannot be

measured unless z = � = 0. We consider the posterior mean of �t, denoted by ht. This

appendix explains the computation of ht.

Let G = (Gt)t�0 be the right-continuous and complete filtration generated by the

observable data, i.e., Gt = �(Dt) ⇢ Ft. The posterior mean ht of �t is the optional

projection of � onto G.17 It satisfies

ht = E [�t | Gt] (9)

almost surely, and represents the default rate given the observable data available at t (more

precisely, it is the intensity relative to G). We exploit the change of measure defined by

(5) to e�ciently compute ht using two calls of Algorithm B.2, one with u(�) ⌘ 1 and one

with u(�) = �. This is based on the following result.

Proposition C.1. Suppose E[1/M⌧ ] = 1 for M⌧ defined in (5). For t  ⌧ , the posterior

mean ht satisfies almost surely

ht =
E⇤ [�tMt | Dt]

E⇤ [Mt | Dt]
. (10)

Proof. Theorem T3 of Section VI of Brémaud (1980) states that, given E[1/M⌧ ] = 1,

the exponential martingale M induces an equivalent probability measure P⇤ on the �-

field F⌧ with Radon-Nikodym density dP⇤

dP = 1/M⌧ . Moreover, the process (1/Mt)t⌧ is

a martingale with respect to F by Theorem II.T8 of Brémaud (1980). Since Mt > 0 for

all t  ⌧ , it follows that P is also absolutely continuous with respect to P⇤ on Ft with

Radon-Nikdoym density
dP
dP⇤

����
Ft

= Mt

for t  ⌧ . Optional projection indicates that P is also absolutely continuous with respect

to P⇤ on the �-algebra Gt ✓ Ft for all t  ⌧ with Radon-Nikodym density E⇤ [Mt | Gt].

Now, � is positive and F-adapted. This implies that

ht = E [�t | Gt] =
E⇤ [�tMt | Gt]

E⇤ [Mt | Gt]
.

In order to obtain (10), note that Gt = �(Dt).

D Goodness-of-fit tests

This appendix extends a key result of Das et al. (2007) for doubly-stochastic models

with observable risk factors. The extension allows us to construct goodness-of-fit tests for

17See Protter (2004) for details on the optional projection.
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our default timing model (1), which violates the doubly-stochastic hypothesis due to the

presence of the frailty and self-exciting terms. A key role is played by the posterior mean

ht of the intensity, which is discussed in Appendix C.

Proposition D.1. Let Ht be the right-continuous inverse to Ct =
R t

0 hudu, i.e.,

Ht = max

⇢
s � 0 :

Z s

0

hudu  t

�
. (11)

The time-changed process J defined by Jt = NHt is a standard Poisson process on [0,1)

relative to P and the minimal right-continuous completion H of (GHt)t�0.

Proof. A result of Meyer (1971) implies that a counting process with compensator that is

continuous and increasing to1 almost surely can be transformed into a standard Poisson

process by a change of time given by the compensator. Relative to the filtration G gener-

ated by the observable data (see Appendix C), the counting process N has compensator

C given by Ct =
R t

0 hudu, where h is the posterior mean of the intensity given by Propo-

sition C.1. Since each Ht is a stopping time with respect to G, we can define the stopping

time �-algebra Ht = GHt , which is the smallest �-algebra containing all right-continuous

left limit processes sampled at Ht. Meyer’s theorem implies that the time-scaled process

J is a standard Poisson process in the time-changed filtration H, which is the minimal

right-continuous completion of (Ht)t�0.

Proposition D.1 states that the default count Nt can be transformed into a stan-

dard Poisson process by a change of time given by the cumulative posterior mean of the

intensity. The posterior mean is given by Proposition C.1, and can be computed using

Algorithm B.2. This result allows us to test model fit by testing the Poisson property of

the time-scaled default times.

E Out-of-sample simulation

This appendix describes the simulation procedure we use to forecast the conditional dis-

tribution of the total number of defaults out-of-sample.

Inspired by Das et al. (2007), Du�e et al. (2007) and Du�e et al. (2009), we employ a

daily Gaussian vector auto-regression of order 41 for the vector containing the rolling S&P

500 yearly return and volatility, the yield of the 3-month Treasury Bill, and the spread

between the yields of the 10-year and the 1-year Treasury bonds. We employ a monthly

ARMA(1,1) model for the growth rate of the industrial production growth, a quarterly

MA(1) model for the GDP growth rate, and a weekly AR(1) model for the spread between

the yields of BAA and AAA rated corporate bonds. We choose the optimal autoregression

and moving-average orders according to the Akaike information criterion.

Using data Dt available at time t, we estimate the models of the explanatory vari-

ables and the models of default timing in Table 3. We then compute the model-implied
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conditional distribution of the number of defaults during (t, t+1]. The distribution is cal-

culated by Monte Carlo simulation of default times using 100,000 trials. The simulation

is based on the (daily) discretization of the posterior mean ht during (t, t+1] as described

in Giesecke & Teng (2012), and the simulation of the explanatory variables during that

interval. We interpolate the simulated paths of the less frequently observed explanatory

variables to obtain a series of daily values for all variables.

The feasibility of event simulation using ht along with our ability to compute ht using

Proposition C.1 eliminates the need to generate paths of the frailty during (t, t+1], which

would be required if the simulation were based on the intensity �. This increases the

e�ciency of event prediction by an order of magnitude relative to the prediction based

on � that is standard in the frailty literature.
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Charles, Amélie, Olivier Darné & Jae H. Kim (2011), ‘Small sample properties of alter-

native tests for martingale di↵erence hypothesis’, Economics Letters 110(2), 151 –

154.

Chava, Sudheer & Robert Jarrow (2004), ‘Bankruptcy prediction with industry e↵ects’,

Review of Finance 8, 537–569.

Christo↵ersen, Peter (1998), ‘Evaluating interval forecasts’, International Economic Re-

view 39, 842–862.

Collin-Dufresne, Pierre, Robert Goldstein & Jean Helwege (2009), How large can jump-

to-default risk premia be? Modeling contagion via the updating of beliefs. Working

Paper, Columbia University.

Collin-Dufresne, Pierre, Robert Goldstein & Julien Hugonnier (2004), ‘A general formula

for the valuation of defaultable securities’, Econometrica 72, 1377–1407.

Collin-Dufresne, Pierre, Robert S. Goldstein & J. Spencer Martin (2001), ‘The determi-

nants of credit spread changes’, Journal of Finance 56(6), 2177–2207.

Cox, D. R. (1972), ‘Regression models and life-tables’, Journal of the Royal Statistical

Society. Series B (Methodological) 34(2), 187–220.

Das, Sanjiv, Darrell Du�e, Nikunj Kapadia & Leandro Saita (2007), ‘Common failings:

How corporate defaults are correlated’, Journal of Finance 62, 93–117.

Delloye, Martin, Jean-David Fermanian & Mohammed Sbai (2006), ‘Dynamic frailties and

credit portfolio modeling’, Risk 19(1), 101–109.

Domı́nguez, Manuel A. & Ignacio N. Lobato (2003), ‘Testing the martingale di↵erence

hypothesis’, Econometric Reviews 22(4), 351–377.

Du�e, Darrell, Andreas Eckner, Guillaume Horel & Leandro Saita (2009), ‘Frailty corre-

lated default’, Journal of Finance 64, 2089–2123.

Du�e, Darrell, Leandro Saita & Ke Wang (2007), ‘Multi-period corporate default predic-

tion with stochastic covariates’, Journal of Financial Economics 83(3), 635–665.

24



Du�e, Darrell & Nicolae Garleanu (2001), ‘Risk and valuation of collateralized debt

obligations’, Financial Analysts Journal 57(1), 41–59.

Dumontaux, Nicolas & Adrian Pop (2013), ‘Understanding the market reaction to shock-

waves: Evidence from the failure of lehman brothers’, Journal of Financial Stability

9(3), 269 – 286.

Engle, Robert & Simone Manganelli (2004), ‘Caviar: Conditional autoregressive value at

risk by regression quantiles’, Journal of Business and Economic Statistics 22(4), 367–

381.

Errais, Eymen, Kay Giesecke & Lisa Goldberg (2010), ‘A�ne point processes and portfolio

credit risk’, SIAM Journal on Financial Mathematics 1, 642–665.

Feldhütter, Peter & Mads Stenbo Nielsen (2012), ‘Systematic and idiosyncratic default

risk in synthetic credit markets’, Journal of Financial Econometrics 10(2), 292–324.

Fernando, Chitru S., Anthony D. May & William L. Megginson (2012), ‘The value of

investment banking relationships: Evidence from the collapse of lehman brothers’,

The Journal of Finance 67(1), 235–270.

Giesecke, Kay (2004), ‘Correlated default with incomplete information’, Journal of Bank-

ing and Finance 28, 1521–1545.

Giesecke, Kay, Francis A. Longsta↵, Stephen Schaefer & Ilya Strebulaev (2011), ‘Cor-

porate bond default risk: A 150-year perspective’, Journal of Financial Economics

102(2), 233 – 250.

Giesecke, Kay, Francis A. Longsta↵, Stephen Schaefer & Ilya Strebulaev (2014), ‘Macroe-

conomic e↵ect of corporate default crises: A long-term perspective’, Journal of Fi-

nancial Economics 111(2), 297–310.

Giesecke, Kay & Gerald Teng (2012), Numerical solution of jump-di↵usion SDEs. Working

Paper, Stanford University.

Giesecke, Kay & Gustavo Schwenkler (2014), Filtered likelihood for point processes. Work-

ing paper.
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‘Séminaire de Probabilités V, Lecture Notes in Mathematics 191’, Springer-Verlag

Berlin, pp. 191–195.

Mortensen, Allan (2006), ‘Semi-analytical valuation of basket credit derivatives in

intensity-based models’, Journal of Derivatives 13, 8–26.

Protter, Philip (2004), Stochastic Integration and Di↵erential Equations, Springer-Verlag,

New York.

Shumway, Tyler (2001), ‘Forecasting bankruptcy more accurately: A simple hazard

model’, Journal of Business 74, 101–124.

26



Stulz, Rene M. (2010), ‘Credit default swaps and the credit crisis’, Journal of Economic

Perspectives 24(1), 73–92.

Winkelmann, Rainer (2008), Econometric Analysis of Count Data, Springer.

27



Variable Mean
Standard

Skewness Kurtosis Min.
First

Median
Third

Max. Correlation
deviation quartile quartile

Number of defaults
3.88 4.42 1.81 4.29 0 1 3 6 29 1.00

per month

Total debt outstanding at default
671.53 1265.53 4.09 23.23 0.00 1.31 179.76 776.59 11314.78 0.72

per month (millions of USD)

Growth rate of U.S.
2.32 4.14 �0.87 1.55 �13.99 0.55 2.66 4.79 10.73 �0.42

industrial production

Growth rate of U.S.
6.71 4.27 0.76 2.96 �8.40 4.40 6.05 8.53 25.50 �0.46

GDP (annualized)

Trailing 1-year return of
8.11 17.06 �0.42 0.05 �42.51 �2.33 9.92 20.38 52.64 �0.28

S&P 500

Trailing 1-year volatility
17.89 7.82 0.46 �0.49 1.80 11.34 17.28 23.00 38.31 0.12

of S&P 500

3M Treasury Bill yield 5.28 3.23 0.56 0.68 0.01 3.27 5.09 7.12 16.30 �0.40
10Y-to-1Y Treasury

1.05 1.26 �0.34 �0.32 �3.07 0.24 1.08 1.92 3.40 0.30
bond yield spread

BAA-to-AAA corporate
1.12 0.46 1.69 3.65 0.55 0.80 0.98 1.31 3.38 0.04

bond yield spread

Table 1: Summary statistics of monthly data. This table provides summary statistics for the time series of monthly defaults,
total debt outstanding at default per month, and explanatory variables (sampled monthly). Each series has 516 values. The
column “Correlation” indicates the linear correlation coe�cient between monthly defaults and another variable.
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Regression 1 Regression 2

Variable Coe�cient t-statistic Coe�cient t-statistic

Constant 2.651 *** 23.416 0.715 *** 3.916

Industrial production growth �0.066 *** �8.872 �0.029 *** �3.320
GDP growth �0.105 *** �13.234 �0.065 *** �7.200
S&P 500 yearly return �0.008 *** �4.733 �0.004 �1.927
S&P 500 yearly volatility 0.016 *** 5.055 0.006 1.798

3-month T-Bill yield �0.043 *** �3.416 0.032 * 2.260

Spread, 10Y vs. 1Y Treasury bond yields �0.081 ** �2.675 �0.078 ** �2.604
Spread, BAA vs. AAA corporate bond yields �0.689 *** �11.385 �0.398 *** �6.437
Lag one defaults per month 0.045 *** 6.403

Lag one total debt outstanding at default per month 0.169 *** 8.954

Deviance R2 0.3958 0.5639

Likelihood ratio statistic, Regression 1 vs. Regression 2 *** 397.34

Table 2: Coe�cient estimates and t-statistics of Poisson regressions of monthly defaults. Regression 1: Expected number of
defaults in [t, t+1/12) = exp ( Constant + �1 Industrial production growth at time t + �2 GDP growth at time t + �3 S&P500
return at time t + �4 S&P500 volatility at time t + �5 3M Treasury yield at time t + �6 Treasury yield spread at time t + �7

Corporate yield spread at time t. Regression 2: the variables Number of defaults in [t�1, t�1+1/12) and Total debt outstanding
at default in [t � 1, t � 1 + 1/12) are included as additional regressors. * indicates significance at the 95% level, ** significance
at the 99% level, and *** significance at the 99.9% level. The regressions are based on 515 data points. The deviance R2 is
computed in accordance with Cameron & Windmeijer (1996). The likelihood ratio test statistic has an asymptotic chi-squared
distribution with one degree of freedom.
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Model Parameter Restrictions Intensity

Complete None �t = exp(a0 +
Pd

i=1 aiXi,t) +Yt +Zt

Base + Frailty b = 0 �t = exp(a0 +
Pd

i=1 aiXi,t) +Zt

Base + Contagion z = � = 0 �t = exp(a0 +
Pd

i=1 aiXi,t) +Yt

Base b = z = � = 0 �t = exp(a0 +
Pd

i=1 aiXi,t)

Table 3: Reduced-form model alternatives. The table reports the intensity specification for each reduced-form model we estimate.
Each model addresses a di↵erent set of clustering sources.

30



Complete Base Base + Contagion Base + Frailty

Constant a0 ** �1.6926 *** 1.0141 ** �1.6639 0.5649
(0.6765) (0.1349) (0.6453) (0.8971)

Industrial Production coe�cient a1 �0.0013 �0.0509 �0.0027 �0.0616
(0.0334) (0.0086) (0.0318) (0.0471)

GDP Growth coe�cient a3 *** �0.1235 *** �0.1117 *** �0.1197 0.0031
(0.0360) (0.0098) (0.0343) (0.0391)

S&P 500 Return coe�cient a4 0.0017 * �0.0045 0.0015 �0.0193
(0.0078) (0.0018) (0.0074) (0.0173)

S&P 500 Volatility coe�cient a5 0.0038 ** 0.0112 0.0041 0.0123
(0.0208) (0.0038) (0.0222) (0.0246)

3M T-Bill Yield coe�cient a6 0.0284 ** �0.0466 0.0277 *** �0.6734
(0.0612) (0.0149) (0.0857) (0.1546)

10Y-1Y Treasury Yield Spread coe�cient a8 �0.0007 * �0.0821 �0.0019 0.4748
(0.1751) (0.0352) (0.2770) (0.2836)

BAA-AAA Corporate Yield Spread coe�cient a9 �0.01804 *** �0.7305 �0.0192 �0.0971
(0.3907) (0.0741) (0.4253) (0.3035)

Frailty volatility � 0.2221 *** 0.1288
(0.1602) (0.0146)

Frailty mean reversion rate k * 6.0203 *** 0.0156
(2.9545) (0.0002)

Frailty mean reversion level z * 0.0041 *** 0.5335
(0.0020) (0.0577)

Contagion sensitivity b *** 0.0103 *** 0.0101
(0.0017) (0.0017)

Contagion decay rate  *** 0.0571 *** 0.0563
(0.0096) (0.0098)

Log-likelihood 606.29 446.12 606.21 599.24

Table 4: Parameter estimates for each of the four model alternatives described in Table 3. The asymptotic standard errors are
given parenthetically. They are computed using the Hessian matrix of the log-likelihood at the parameter estimates reported. *
indicates significance at the 95% level, ** significance at the 99% level, and *** significance at the 99.9% level.
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Complete Base Base + contagion Base + frailty

Automatic Portmanteau (AQ) test 0.235 *** 0.000 0.225 0.438
Automatic Variance Ratio (AVR) test 0.181 *** 0.000 0.169 0.600

Cramer-von Mises (CvM) test 0.704 *** 0.000 0.679 0.073
Kolmogorov-Smirnov (KS) test 0.831 *** 0.000 0.783 0.064

Table 5: Martingale di↵erence tests. We perform a series of tests of the martingale di↵erence hypothesis for the increments of
the fitted Mt in (4) between defaults. A martingale di↵erence sequence has no dependence in mean. The tests evaluate both
linear (AQ test) as well as non-linear dependence in mean (AVR, CvM, and KS tests). The asymptotic distribution of the AQ
test is chi-squared with one degree of freedom. The p-values of the remaining tests are computed via bootstrapping with 1, 000
bootstrap samples. For the AVR test, we perform a wild bootstrap based on Mammen’s two-point distribution. The CvM and
KS test statistics are computed as indicated by Domı́nguez & Lobato (2003). *** indicates significance at the 99.9% level.
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Benchmark model Base Base Base Base + contagion Base + frailty
Alternative model Base + contagion Base + frailty Complete Complete Complete

Test statistic 320.18 299.60 320.34 0.16 14.10
Degrees of freedom 2 3 5 3 2
p-value *** 0.000 *** 0.000 *** 0.000 0.984 *** 0.001

Table 6: Likelihood ratio tests. This table reports likelihood ratio test statistics, p-values, and degrees of freedom for the
corresponding asymptotic distributions. A likelihood ratio test evaluates the fit of an alternative model relative to a nested
benchmark model. The test statistic is given by twice the di↵erence between the maximum log-likelihood of the alternative
model and the benchmark model. The log-likelihood values are reported in Table 4. The test statistic has, asymptotically, a
chi-squared distribution with degrees of freedom equal to the number of additional parameters included in the alternative. ***
indicates significance at the 99.9% level.
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w = 2
Observations Mean Variance Skewness Kurtosis

Theoretical 2.000 2.000 0.707 3.500
Base model 727 1.997 2.617 1.134 6.161
Base + contagion model 729 1.992 1.585 0.565 3.268
Base + frailty model 775 1.874 1.302 0.613 3.606
Complete model 730 1.989 1.597 0.611 3.206

w = 4
Observations Mean Variance Skewness Kurtosis

Theoretical 4.000 4.000 0.500 3.250
Base model 364 3.989 6.997 0.846 4.581
Base + contagion model 365 3.978 3.247 0.391 2.989
Base + frailty model 388 3.742 2.466 0.393 2.999
Complete model 365 3.978 3.527 0.592 3.301

w = 6
Observations Mean Variance Skewness Kurtosis

Theoretical 6.000 6.000 0.408 3.167
Base model 243 5.975 13.983 0.800 4.274
Base + contagion model 243 5.975 5.371 0.343 2.854
Base + frailty model 259 5.606 3.720 0.309 3.203
Complete model 244 5.951 5.586 0.232 2.690

w = 8
Observations Mean Variance Skewness Kurtosis

Theoretical 8.000 8.000 0.354 3.125
Base model 182 7.978 21.900 0.570 3.618
Base + contagion model 183 7.934 7.655 0.206 3.055
Base + frailty model 194 7.485 4.987 0.069 2.572
Complete model 183 7.934 7.633 0.236 2.488

w = 10
Observations Mean Variance Skewness Kurtosis

Theoretical 10.000 10.000 0.316 3.100
Base model 146 9.945 33.087 0.502 3.353
Base + contagion model 146 9.945 9.431 0.095 3.093
Base + frailty model 155 9.368 6.104 0.168 2.876
Complete model 146 9.945 9.680 0.130 2.549

Table 7: Moments of binned event counts. This table reports the first four empirical mo-
ments of the binned event counts Pw

i for bin sizes w 2 {2, 4, 6, 8, 10}, for each alternative
model. We also report the moments of the theoretical Poisson distributions with rate w.
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Pottho↵-Whittinghill-Bohning Test Kocherlakota-Kocherlakota Test
w Base Base + frailty Base + contagion Complete w Base Base + frailty Base + contagion Complete

2 *** 0.000 *** 0.000 *** 0.000 *** 0.000 2 0.575 0.508 0.688 0.693
4 *** 0.000 *** 0.000 * 0.012 0.126 4 0.158 0.466 0.719 0.807
6 *** 0.000 *** 0.000 0.253 0.499 6 * 0.015 0.482 0.833 0.916
8 *** 0.000 ** 0.001 0.737 0.717 8 ** 0.001 0.515 0.965 0.949
10 *** 0.000 ** 0.002 0.660 0.820 10 *** 0.000 0.489 0.952 0.978

Independence Test Fisher Dispersion Test
w Base Base + frailty Base + contagion Complete w Base Base + frailty Base + contagion Complete

2 *** 0.000 0.911 0.961 0.517 2 *** 0.000 1.000 1.000 1.000
4 *** 0.000 0.655 0.148 0.163 4 *** 0.000 1.000 0.997 0.949
6 *** 0.000 * 0.030 0.118 0.064 6 *** 0.000 1.000 0.884 0.771
8 *** 0.000 0.074 0.296 ** 0.004 8 *** 0.000 1.000 0.647 0.657
10 *** 0.000 ** 0.002 * 0.018 ** 0.001 10 *** 0.000 1.000 0.674 0.592

Upper Tail Test Chi-Squared Test
w Base Base + frailty Base + contagion Complete w Base Base + frailty Base + contagion Complete

2 ** 0.004 1.000 0.994 0.985 2 *** 0.000 *** 0.000 *** 0.000 *** 0.000
4 *** 0.000 1.000 0.921 0.796 4 *** 0.000 *** 0.000 ** 0.008 0.115
6 *** 0.000 1.000 0.742 0.630 6 *** 0.000 *** 0.000 0.248 0.517
8 *** 0.000 1.000 0.741 0.672 8 *** 0.000 *** 0.000 0.763 0.746
10 *** 0.000 1.000 0.769 0.632 10 *** 0.000 *** 0.000 0.683 0.849

Table 8: Poisson distribution tests. p-values of Poisson distribution tests for the counts of the binned event counts Pw
i . The

Pottho↵-Whittinghill-Bohning test compares the empirical moments of the Pw
i to the theoretical moments. Its asymptotic

distribution is standard normal (Karlis & Xekalaki (2000)). The Kocherlakota-Kocherlakota test evaluates the empirical moment
generating function of the Pw

i and compares to its theoretical counterpart, see Karlis & Xekalaki (2000). The upper tail test
examines the fatness of the right tail of the empirical distribution of the Pw

i ; see Das et al. (2007). We compute empirical p-values
for the Kocherlakota-Kocherlakota and the upper tail tests via bootstrapping with 100, 000 samples. The independence test is a
BDS test with a distance parameter of one standard deviation. The Fisher dispersion test examines the variance of the realized
Pw
i s and is described in Das et al. (2007). Finally, we also perform a standard chi-squared goodness of fit test for the Poisson

distribution. The number of samples of Pw
i for each model are as follows (ordered by increasing bin size). Base: 727, 364, 243,

182, 146. Base + frailty: 775, 388, 259, 194, 155. Base + contagion: 729, 365, 243, 183, 146. Complete: 730, 365, 244, 183, 146.
* indicates rejection with 95% confidence, ** rejection with 99% confidence, and *** rejection with 99.9% confidence.
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Model Base Base + frailty Base + contagion Complete

Violation Rate 5/22 0/22 2/22 1/22
Unconditional Coverage Test *** 0.000 0.506 * 0.020 0.221
Independence Test 0.951 1.000 0.107 0.752
Markov Test *** 0.000 0.802 * 0.018 0.450
Dynamic Quantile Test * 0.020 1.000 0.318 0.972

Mean Relative Bias �11.98% 26.44% �8.13% �6.32%
Root Mean Squared Relative Bias 17.31% 33.30% 14.37% 13.77%

Table 9: Out-of-sample forecast accuracy tests. The table reports p-values of various tests of forecast accuracy and other measures
of accuracy. The violation rate indicates the number of times that the realized number of defaults in a given year exceeds the
forecast value-at-risk. The null hypothesis of the unconditional coverage test of Kupiec (1995) is that the violation rate does not
exceed 1%. The null hypothesis of the independence test of Christo↵ersen (1998) is that a binary first-order Markov chain for the
hit indicators has transition matrix given by the identity matrix. The asymptotic distribution of these tests is chi-squared with
one degree of freedom. The Markov test combines the coverage and independence tests. It takes the null of the coverage test and
the alternative of the independence test, see Christo↵ersen (1998). The asymptotic distribution of this test is chi-squared with
two degrees of freedom. The null hypothesis of the dynamic quantile test due to Engle & Manganelli (2004) is that there is no
correlation between the hit indicators and the number of defaults per year. The asymptotic distribution is chi-squared with three
degrees of freedom. Finally, the mean relative bias is the average relative di↵erence of the value-at-risk predicted by each model,
compared to the average prediction of all models. The root mean squared relative bias is the standard deviation of the latter. *
indicates rejection with 95% confidence, *** indicates rejection with 99% confidence, and *** rejection with 99.9% confidence.
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(a) Number of defaults by Moody’s event category.
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(b) Number of defaults by industry sector according to Moody’s 11 Code.

Figure 2: Defaults by event category and industry sector.
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Figure 3: Distribution of the total amount of debt outstanding at default. This chart presents a histogram of the total amount
of debt outstanding at default for our sample of events.
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Figure 4: Regression residuals and monthly defaults. This chart shows the deviance resid-
uals from the Poisson regressions of monthly defaults (solid line, left scale), along with
95% empirical confidence bands of the residuals (dashed line, left scale), monthly defaults
(grey bars, right scale), and the linear correlation coe�cient of residuals and monthly de-
faults. Top panel: Regression 1. Bottom panel: Regression 2. See Table 2 for the definition
of the regressions. The deviance residuals of a Poisson regressions are analogous to the
residuals of a linear regression.
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Figure 5: Autocorrelation of regression residuals. This chart plots the autocorrelation
function up to lag 24 of the regression residuals shown in Figure 4. For lag 0, the autocor-
relation is 1. For lag l > 0, the autocorrelation is the quotient of the covariance between
the current residual and the lag l residual to the error variance S2 (see Table 2). The
dashed lines show the 95% confidence bands for the autocorrelation function assuming
independent and identically distributed residuals. Top panel: Regression 1. Bottom panel:
Regression 2. See Table 2 for the definition of the regressions.
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Figure 6: Autocorrelation of monthly defaults. This chart shows the autocorrelation func-
tion up to lag 24 of the number of defaults per month. The dashed lines indicate 95%
confidence bands for the autocorrelation function, obtained under the assumption of in-
dependent and identically distributed values.
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Figure 7: Fitted intensities. A figure shows the fitted intensity (measured in defaults per year) implied by the maximum likelihood
estimates reported in Table 4. A grey bar represents the realized number of defaults per year.
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Figure 8: Out-of-sample forecast distribution of the number of defaults in the year ahead. The plot shows the Gaussian kernel-
smoothed forecast distributions, with a horizontal line indicating the mean. The dot indicates the realized number of defaults.
The forecast distributions are computed via Monte Carlo simulation as described in Appendix E.
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