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Abstract

This paper studies the asset pricing implications of a firm’s option to adopt labor-
saving technologies that replace routine-task labor with machines. I develop a model
that shows it is less costly for a firm to exercise this option when productivity is low.
Hence, firms with routine-task labor have an option that hedges their value against
unfavorable macroeconomic shocks and lowers their exposure to systematic risk. Using
establishment occupational data from the Bureau of Labor Statistics, I construct a
measure of firms’ share of routine-task labor. Consistent with my model’s predictions,
I find that in the cross-section, firms with a higher share of routine-task labor (i) invest
more in machines and reduce disproportionally more of their routine-task labor during
economic downturns, and (ii) have lower expected equity returns.
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As technology evolves, machines tend to replace labor in certain jobs. Historical examples

from the Industrial Revolution include the spinning jenny and the automatic loom replacing

hand labor. More recent examples include calculators, word processors, automatic tellers,

and robotic arms replacing large numbers of workers in procedural and rule-based jobs, i.e.,

routine-task labor.1 Prior literature shows that the disappearance of routine-task jobs tends to

occur during recessions rather than expansions, and that such job disappearance constitutes

almost all job loss in the three most recent recessions.2 This evidence suggests that labor-

technology substitution is an economically important decision that varies with the business

cycle.

In this paper, I explore the asset pricing implications of labor-technology substitution.

Specifically, I examine whether the option for a firm to replace routine-task labor with ma-

chines is a source of macroeconomic risk that is priced in the cross-section of stock returns. I

document that firms with a high share of routine-task labor have 3.1% lower stock returns per

year than their industry peers with a low share. The key insight of my explanation hinges on

that replacing routine-task labor with machines interrupts production. Firms thus optimally

undertake such replacement when productivity is low. Hence, if the economy experiences a

negative shock, firms with more routine-task labor can better improve their value through

undertaking the replacement, making them less exposed to systematic risk. In line with this

insight, I find that in response to an unfavorable GDP shock, firms with a high share of

routine-task labor reduce investment in machines less than their industry peers but increase

layoffs of their routine-task labor more than their industry peers.

To capture the economic mechanism, I develop a production-based model. In the model, a

firm generates cash flows from two substitutable groups of projects. One group uses machines

to perform routine tasks (automated projects) while the other uses routine-task labor (unauto-

mated projects). Because machines are cheaper to use than routine-task labor, unautomated

projects embed a switching option to become automated. A key assumption is that adopting

machines takes time as the firm needs to adapt the technology embodied in the machines to
1Examples of routine-task labor over the past 30 years include clerks, travel agents, production line

assemblers, bank tellers, and tax preparers. Throughout this paper, I use machines to refer to both equipment
and software.

2Jaimovich and Siu (2014) show that in the 1990, 2001, and 2008-09 recessions, routine-task jobs, which
account for about half of the total employment, constitute 89%, 91%, and 94% of all job loss, respectively.
The authors also show that essentially all job loss in routine-task occupations occurs in recessions and is not
recovered after the recessions.

1



its project.3 During this adoption period, the project generates zero output. To minimize

the production loss, the firm switches a project from unautomated to automated only when

the project is generating low cash flows. Hence, if the economy experiences a negative shock,

firms with a high share of routine-task labor (and more unautomated projects) can better

improve their value by reducing future production costs through technology switching. As a

result, these firms have lower exposure to systematic risk and hence lower expected returns.4

To study the empirical relation between routine-task labor and the cross-section of stock

returns, I construct a new measure of share of routine-task labor (RShare) at the firm level

using microdata from the Occupational Employment Statistics (OES) program of the Bureau

of Labor Statistics. The OES microdata provide occupational employment and wages for 1.2

million establishments in the U.S. over three-year cycles, covering 62% of total national

employment. Following the labor economics literature, I first assign to each occupation

a routine-task intensity score, which is calculated based on the Dictionary of Occupational

Titles.5 I then sort all workers in each year by their occupations’ routine-task intensity scores

and classify the workers that fall in the top quintile of the distribution as routine-task labor.

By classifying routine-task labor each year, this measure accounts for technological evolution.

In particular, it accounts for the fact that certain previously non-substitutable occupations

become substitutable by machines over time. A firm’s RShare is given as the ratio of the

total wages paid to its routine-task labor relative to its total wage expense. I rank firms

based on their RShare relative to their industry peers, since different industries’ production

technologies may require different intensities of routine-task input to non-routine-task input.

My measure of firms’ share of routine-task labor is correlated with a number of firm

characteristics in a manner that is consistent with my model. In the data, high-RShare firms
3This assumption is proposed by literature on the slow diffusion of new technology. For instance, in the

New Economy Handbook, Hall and Khan (2003) point out that: “[...] the costs (of adopting a new technology),
especially those of the non-pecuniary ‘learning’ type, are typically incurred at the time of adoption and cannot
be recovered. There may be an ongoing fee for using some types of new technology, but typically it is much
less than the full initial cost.”

4A concrete example is Harley-Davidson Inc. In April 2009, the midst of the Great Recession, Harley-
Davidson launched a comprehensive restructuring after demand for its products plummeted. The restructur-
ing resulted in layoffs of more than 2,000 staff and production workers as well as investments in cutting-edge
manufacturing equipment such as automated guided carriers. After the restructuring, the company’s unlev-
ered equity beta increased from 1.08 in the three years prior to the Great Recession (2005-2007) to 1.49 in
the three years after the recession (2010-2012).

5See, for example, Autor, Levy, and Murnane (2003), Autor, Katz, and Kearney (2006), Acemoglu and
Autor (2011), Philippon and Reshef (2013), Autor and Dorn (2013), Autor, Dorn, and Hanson (2013), and
Autor, Dorn, and Hanson (2015).
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have significantly lower ratios of machines to capital and machines to routine-task labor

than their industry peers with low RShare. These relations are consistent with the model

assumption that routine-task labor and machines are substitutes. High-RShare firms also

have higher operating leverage, which is consistent with the model assumption that routine-

task labor is more costly to use than machines.6 Finally, High-RShare firms have higher cash

flows. This is consistent with the model implication that firms that experience higher cash

flows are less likely to replace their routine-task labor with machines.

The main empirical findings in this paper are twofold. First, I find that, in response to

unfavorable aggregate shocks, high-RShare firms replace more of their routine-task labor with

machines than do low-RShare firms. Specifically, I find that high-RShare firms reduce both

routine-task labor and RShare in their establishments more than their industry peers do

when GDP growth is low.7 The reduction in RShare for high-RShare firms’ establishments

suggests that high-RShare firms not only downsize their production in bad times, but also

change their production structure through the bad times. I control for state-year fixed effects

in these establishment-level tests. Hence, state labor protection laws, such as wrongful-

discharge laws, or state unionization laws, such as right-to-work laws, do not seem to drive

the results. In addition, even though aggregate investment is procyclical, I find that in the

cross-section, high-RShare firms reduce investment in machines significantly less than their

industry peers when GDP growth is negative. Together, these results support the model’s

channel that high-RShare firms have more switching options to hedge against unfavorable

aggregate shocks than low-RShare firms. To further support the relation between machines

and routine-task labor, I run a placebo test in which I examine investment in capital other

than machines. I do not find that high-RShare firms respond to GDP shocks differently than

low-RShare firms in terms of investment in other capital.

Second, I find strong negative relations between firms’ RShare and their exposure to

systematic risk and expected returns. I investigate the market betas from both the conditional

and unconditional specifications of the Capital Asset Pricing Model (CAPM). I find that

sorting portfolios of firms by RShare within industry generates a monotonically decreasing

pattern in both conditional and unconditional market betas. The betas of the high-RShare
6The operating leverage channel predicts that firms with a high share of routine-task labor have higher

exposure to systematic risk. In Section I, I simulate the model with economically sensible parameters and find
that the switching options channel dominates the operating leverage channel in predicting expected returns.

7I conduct this test at the establishment level instead of the firm level due to data limitations. See Section
III for more details.
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quintile portfolio are more than 20% lower than those of the low-RShare quintile portfolio

in both the conditional and unconditional CAPMs. I further examine expected returns and

alphas of the five portfolios and find a monotonically decreasing pattern in average excess

returns but no relation between alphas and RShare quintiles, indicating that excess returns

are explained by market betas. Comparing the high and low RShare quintile portfolios yields

a negative return spread of −3.1% per year.8 This low risk premia for high-RShare firms is a

robust feature of the data. Using both panel regressions and Fama-MacBeth cross-sectional

regressions (Fama and MacBeth (1973)), I show that RShare consistently and negatively

predicts firms’ conditional betas (Lewellen and Nagel (2006)) and future excess returns after

controlling for known predictors of firm risk and returns. In particular, the results are robust

to controlling for firms’ operating leverage and cash flows, which are closely related to RShare

but less related to switching options in my model.

To check the robustness of the results that RShare predicts firm risk through the switching

options channel, I examine changes in firms’ switching options and systematic risk after

recessions. My model suggests that after a significant negative aggregate shock, high-RShare

firms exercise more of their switching options, making them similar to low-RShare firms in

terms of both their production structures and their systematic risk. I confirm this prediction

by showing that in the three years after the beginning of the 2001 and 2008-09 recessions,

firms with high and low RShare prior to the recessions become more similar in terms of both

machine-to-employment ratio and operating leverage. In addition, the difference between

their market betas is no longer significant. These results support the view that high-RShare

firms have lower exposure to systematic risk because they have more switching options.

Finally, I examine additional predictions of the model to provide supporting evidence

on the substitutability of routine-task labor by machines. Comparative statics in my model

suggests that a negative shock to machine prices will make firms more willing to replace their

routine-task labor with machines. I explore an unanticipated law introduced in October 2001,

namely, the Job Creation and Worker Assistance (JCWA) Act of 2002, which offers a 30%

temporary tax bonus on corporate investment in equipment. Using the Act as an equivalent

negative shock to machine prices, I conduct a simple counterfactual experiment by asking

what would have happened to the employment of high-routine occupations if the JCWA Act
8Sorting based on RShare across all firms, instead of within industry, generates more than −4.8% return

spread per year. See the Internet Appendix for more details.
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had not been introduced. Consistent with my model’s prediction, I find the JCWA Act led

to a 0.3 million job loss in high-routine occupations from October 2001 to October 2002 but

no effect on low-routine occupations.

This paper adds to existing literature by introducing a new channel through which in-

vestment opportunities impact asset prices. The majority of studies in this area regard

investment opportunities as growth options (see Berk, Green, and Naik (1999), Gomes, Ko-

gan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Zhang (2005), Liu, Whited,

and Zhang (2009), and Ai and Kiku (2013), among others). To the best of my knowledge, this

paper is the first to study the asset pricing implications of a firm’s switching options to re-

duce production costs through labor-technology substitution. By separating growth options

(to increase output) and switching options (to increase efficiency) in my model, I show that

while growth options increase firms’ exposure to systematic risk, switching options lower that

exposure. Thus, my model complements existing theories and improves our understanding

of the links between firms’ investment opportunities and stock returns.

My empirical findings contribute to a growing literature on labor heterogeneity and the

cross-section of stock returns.9 Eisfeldt and Papanikolaou (2013) show that firms with a high

level of organization capital are more exposed to priced technology frontier shocks, since key

talent that owns a firm’s organization capital can walk away in response to these shocks.

Donangelo (2014) shows that firms in industries with mobile workers are more exposed to

aggregate shocks, since mobile workers can walk away for outside options in bad times, making

it difficult for capital owners to shift risk to workers. My work differs from these studies by

exploring a new aspect of labor heterogeneity, namely, the heterogeneous ability of a firm to

replace its workers with machines. Hence, this paper derives the effect of labor heterogeneity

on firm risk through the channel of investment opportunities, while most previous studies

derive this effect through operating leverage.

This paper is also related to recent studies on embodied technology and the cross-section of

stock returns.10 Kogan and Papanikolaou (2014) show that shocks to technologies embodied
9A partial list of papers in this literature is Gourio (2007), Chen, Kacperczyk, and Ortiz-Molina (2011),

Eisfeldt and Papanikolaou (2013), Kuehn, Simutin, and Wang (2013), Belo, Lin, and Bazdresch (2014),
Donangelo (2014), Belo, Lin, Li, and Zhao (2015), Donangelo, Gourio, and Palacios (2015), and Tuzel and
Zhang (2015), among others.

10A partial list of papers in this literature is Papanikolaou (2011), Garleanu, Panageas, and Yu (2012),
Garlappi and Song (2013), Kogan and Papanikolaou (2013), and Kogan and Papanikolaou (2014), among
others.
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in new capital equipment affect the cross-section of stock returns. My paper does not address

shocks to labor-saving technology that is embodied in machines. Rather, I show that a firm’s

decision to adopt labor-saving technology is related to the business cycle. Hence, while

previous studies tend to assume embodied technological shocks as a second risk factor, my

model maintains a single risk factor that is based on aggregate shocks.

This paper builds on the macroeconomics and labor economics literature. Specifically,

my model setup is based on earlier studies that analyzes heterogeneous labor and capital

inputs in production functions. Stokey (1996) considers a three-factor production function

that treats skilled labor, unskilled labor, and physical capital as separate production factors

and assumes physical capital as a substitute for unskilled labor. Krusell, Ohanian, Rios-

Rull, and Violante (2000) extend this framework by further dividing physical capital into

structure and equipment and emphasizing that only technologies that affect the stock of

equipment can impact the wage spread between skilled and unskilled labor. More recently,

Autor, Levy, and Murnane (2003) explicitly model routine-task labor and computers as

substitutable production factors and show that the decline in routine-task jobs is associated

with the increased use of computers. In this paper, instead of modeling a firm’s production

function, I model firms as having two types of projects. While both types of projects require

some non-routine-task labor, they differ in that unautomated projects require routine-task

labor while automated projects require machines.

My empirical measure of routine-task labor is based on recent labor economics literature

on skill-biased technological change. Starting with the seminal work of Autor, Levy, and

Murnane (2003), who provide a novel measure of routine-task labor to proxy for jobs that

can be substituted by computerization, an emerging literature analyzes and improves this

measure.11 I improve the latest version of this measure that is used by Autor and Dorn

(2013) to account for changes in technology over time. Applying the measure to detailed

establishment-level data, this paper is the first to measure firm-level share of routine-task

labor. While most studies focus on the secular trend of routine-task labor being replaced by

computerization, my work is the first to analyze firms’ decision on labor-technology substi-

tution over the business cycle and its implications for stock returns.12

11Acemoglu and Autor (2011) provide a comprehensive review of this literature.
12Jaimovich and Siu (2014) study how routine-task labor contributes to the connection of job polarization

and jobless recovery over the business cycle, but do not explore the substitutability of routine-task labor by
technology.
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The rest of this paper is organized as follows. Section I develops the theoretical model.

Section II details my procedure for measuring firms’ share of routine-task labor. Section III

presents the empirical tests of the model’s predictions. Section IV concludes.

I. The Model

There are a large number of infinitely lived firms that produce a homogeneous final good.

Firms behave competitively, and there is no explicit entry or exit. Firms are all-equity

financed, hence firm value is equal to the market value of its equity.

A. Technology

A.1. Projects

Each firm owns a finite number of individual projects. Firms create projects over time

through investment, and projects expire randomly.13 The cash flows generated by project j

of firm i at time t are given by

Ai,j,t = ext+zi,t+εj,t , (1)

where xt is the aggregate shock that affects the cash flows of all existing projects, and zi,t and

εj,t are the firm-specific shock and the project-specific shock, respectively. While aggregate

uncertainty contributes to the aggregate risk premium, the firm- and project-specific shocks

contributes to firm heterogeneity in the model. Similar to Gomes, Kogan, and Zhang (2003),

I assume that shocks evolve according to mean-reverting processes to capture their path-

dependency property. Different from Gomes, Kogan, and Zhang (2003), I assume that the

rate of mean-reversion are the same for all levels of shocks for tractability. Specifically,

dxt = −θxtdt+ σxdBxt

dzi,t = −θzi,tdt+ σzdBzt

dεj,t = −θεj,tdt+ σεdBεt,

(2)

13Firms with no existing projects can be viewed as firms waiting to enter the product market. In this
sense, my model endogenously takes into account the entry and exit of firms.
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where θ ∈ (0, 1) is the rate of mean-reversion and Bxt, Bzt, and Bεt are Wiener processes

independent of each other. Hence, the dynamics of ai,j,t = log(Ai,j,t) evolve according to

dai,j,t = −θai,j,tdt+ σadBt, (3)

where σa =
√
σ2
x + σ2

z + σ2
ε and Bt = (σxBxt + σzBzt + σεBεt)/σa, which is also a Wiener

process. In the following analysis, I suppress the firm index i and project index j for notational

simplicity unless otherwise indicated.

A project is characterized as follows. First, each project requires an initial investment of

I at the project’s initiation date. Second, each project requires fixed units of non-routine-

task labor such as managers to perform the non-routine tasks, which demands a total wage

of cN per unit of time. Finally, each project also requires factor input to perform routine

tasks, and the project generates cash flows when both non-routine tasks and routine tasks

are performed.

A project’s routine tasks can be performed by either fixed units of routine-task labor or

fixed units of machines. If the firm hires routine-task labor, it pays a total wage of cR per

unit of time, and the project starts producing immediately. Production incurs a fixed cost of

f per unit of time. I refer to projects using routine-task labor as unautomated projects. If the

firm invests in machines, the firm pays IM at the initiation date, but it takes the firm T units

of time to adapt the technology embodied in the machines for its project, during which time

the project does not generate any cash flows.14 After the first T periods, the project starts

generating cash flows and incurs a fixed cost of f per unit of time. Using machines does not

incur additional fixed costs.15 I refer to projects using machines as automated projects. All

capital, once purchased, has zero resale value.

Given the above setup, the operating profits for an unautomated project are

πU(t) = At − cR − cN − f, (4)
14I assume that projects have heterogeneous needs for technology. Hence, each project requires some time

to customize the technology for its own needs.
15Alternatively, we can allow for a fixed cost of using machines, but regard the cost as part of f . In this

case, cR is the excess cost of using routine-task labor to using machines.
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and the operating profits for an automated project initiated at time t0 are

πA(t0; t) =

−cN t ≤ t0 + T (technology-adoption periods)

At − cN − f t > t0 + T (production periods).
(5)

A.2. Firm Dynamics

Given that each project uses a fixed amount of input factors, changes in a firm’s capital

and labor in the model are represented by changes in the number of the firm’s unautomated

and automated projects. Such changes are assumed to arise for one of three reasons. First,

at any point of time, projects can expire independently at a rate of δ. Second, following

Kogan and Papanikolaou (2014), a new project can exogenously become available to the

firm according to a Poisson process with an arrival rate of λ. At the time of arrival, the

project-specific shock of the new project is at its long-run average value, that is εt = 0. Such

investment opportunities cannot be postponed or preserved. If the firm decides to undertake

the new project, it can choose to initiate either an unautomated or an automated project.

Third, a firm can endogenously switch its existing projects’ type at any time. If the

firm decides to switch a project from unautomated to automated, it lays off the project’s

routine-task labor and invests IM in machines. I assume that technology has evolved to

a stage such that automating unautomated projects is profitable. That is, I assume that

IM is significantly lower than the present value of all future wages paid to routine-task

labor, IM � cR
r+δ

.16 For simplicity, I assume that the process of the project-specific shock is

not affected after a project’s type is switched. Given that machines have zero resale value

and routine-task labor is significantly more costly than machines, switching from automated

projects to unautomated projects is never optimal.17

A firm’s existing projects are the sum of its unautomated projects and its automated
16The literature on investment-specific technological shocks argues that a large part of the technological

progress after World War II took place in equipment and software and can be inferred from the decline in the
quality-adjusted price of new capital goods. See Greenwood, Hercowitz, and Krusell (1997), Papanikolaou
(2011), and Kogan and Papanikolaou (2014) for more details.

17I do not allow the firm to switch an automated project to a new automated project to ensure that the
general assumption applies to both unautomated and automated projects that the firm cannot endogenously
suspend production for purposes other than adopting labor-saving technology. Technically, I assume that if
the firm switches an automated project to a new automated project, the firm does not need to take another T
periods to learn the technology for the project, and the project starts incurring production costs immediately.
Under this assumption, such choice is never optimal.
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projects. Suppose at time t that a firm has nU,t unautomated projects and nA,t automated

projects. Then, the firm’s share of routine-task labor (RShare) is defined as the ratio of the

total wages paid to its routine-task labor relative to its total wage expense:

RShare(t) =
cRnU,t

cN(nU,t + nA,t)
. (6)

B. Valuation

Following Berk, Green, and Naik (1999) and Zhang (2005), I specify the stochastic dis-

count factor explicitly as
dΛt

Λt

= −rdt− σΛdBxt, (7)

where r is the interest rate and σΛ is the price of risk.

B.1. The Value of Automated Projects

Since automated projects do not have any options, their value is simply the discounted

value of their future profits. For an automated project initiated at t0,

VA(t0; t) = Et

∫ ∞
0

e−δs
Λt+s

Λt

πA(t0, t+ s)ds

=

∫ ∞
t′

Ae
−θs

t eg(s)ds− cN + e−(r+δ)t′f

r + δ
,

(8)

where t′ = max(t0 + T − t, 0) is the time to wait (for the project to generate cash flows) and

g(s) = (−δ − r)s− σxσΛ

θ

(
1− e−θs

)
+ σ2

a

4θ

(
1− e−2θs

)
. Appendix A.1 provides the derivation.

B.2. The Value of Unautomated Projects

The value of an unautomated project can be divided into the value of assets in place,

V AP
U (t), and the value of switching options, V SO

U (t):

VU(t) = V AP
U (t) + V SO

U (t). (9)
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The value of assets in place is simply the discounted value of future profits:

V AP
U (t) = Et

∫ ∞
0

e−δs
Λt+s

Λt

πU(t+ s)ds

=

∫ ∞
0

Ae
−θs

t eg(s)ds− cR + cN + f

r + δ
.

(10)

The value of the switching option can be calculated as the discounted value of the optimal

payoff:

V SO
U (t) = Payoff(t+ τ)Êt[e−(r+δ)τ ], (11)

where τ is the optimal stopping time for the firm to switch technology and Êt[·] is an expec-

tation operator under the risk-neutral probability measure. The payoff function is

Payoff(t) = VA(t; t)− V AP
U (t)− IM

=
cR + f [1− e−(r+δ)T ]

r + δ
− IM −

∫ T

0

Ae
−θs

t eg(s)ds

= P (At).

(12)

Hence, the switching option can be viewed as an investment opportunity with a fixed

benefit, a fixed direct cost, but a variable opportunity cost that is low if the project is doing

poorly. Following Dixit and Pindyck (1994), I prove the following in Appendix A.2.

Proposition 1 (Optimal exercise of switching options): A firm optimally switches a project

from unautomated to automated when the project’s cash flows, At, are below a threshold A∗,

where A∗ satisfies
d [P (A∗)O(At, A

∗)]

dA∗
= 0 ∀At ≥ A∗, (13)

where O(At, A
∗) = Êt[e−(r+δ)τ ] is the optimal discounting of the option payoff.

The analytical expression of O(At, A
∗) is provided in Appendix A.2.

Corollary 1 (Cross-section of investment for technology switching): Keeping all else equal,

a firm with a high RShare invests more in machines than a firm with a low RShare if the

economy experiences a negative shock, that is, dxt < 0.18

18“Keeping all else equal” in this corollary means that we are comparing two firms with the same number
of projects and the same set of cash flows for their projects. The only difference is that the high-RShare firm
has more unautomated projects than the other firm.
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Proof: This follows directly from Proposition 1.

Corollary 2 (Cross-section of routine-task employment under negative aggregate shocks):

Keeping all else equal, a firm with a high RShare reduces more of their routine-task labor

than a firm with a low RShare if the economy experiences a negative shock, that is, dxt < 0.

Proof: This follows directly from Proposition 1.

Finally, the value of the unautomated project is

VU(t) =

∫ ∞
0

Ae
−θs

t eg(s)ds− cR + cN + f

r + δ
+ P (A∗)O(At, A

∗). (14)

B.3. The Value of Growth Opportunities

Given that the investment opportunities cannot be postponed, firms optimally decide to

undertake new projects based on the NPV rule. The optimal exercise of the growth options

is thus characterized by comparing the incremental value of undertaking a new unautomated

project, VU(t+ s)− I, undertaking a new automated project, VA(t+ s; t+ s)− IM − I, and
not undertaking a project.

The optimal exercise of switching options indicates that firms prefer undertaking new

automated projects over undertaking new unautomated projects if At < A∗.19 Let A∗∗

be the threshold for firms to undertake a new project. A∗∗ is determined by making the

investment in the new project a zero NPV project, that is, A∗∗ is the solution to

VA(t; t)− IM − I = 0 (15)

or the solution to

VU(t)− I = 0. (16)

I summarizes these results in the following proposition.

Proposition 2 (Optimal exercise of growth options): A firm optimally undertakes a new

project when the cash flows of the new project, At = ext+zt+0, are above a threshold A∗∗. A∗∗

is the minimum of the solutions to equations (15) and (16).
19To see this, suppose that a firm undertakes a new unautomated project when At < A∗. Then, by

Proposition 1, the firm will immediately switch the project to automated.
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If A∗∗ < A∗, firms undertake an automated project when A∗∗ < At ≤ A∗ and undertake

an unautomated project when At > A∗.

If A∗∗ ≥ A∗, firms undertake an unautomated project when At > A∗∗.

Corollary 3 (Procyclical aggregate investment): All firms are more likely to invest in new

projects if the economy experiences a positive shock, that is, dxt > 0.

Proof: This follows directly from Proposition 2.

This corollary helps to generate procyclical aggregate investment in the model.

Corollary 4 (Cross-section of investment for growth): If A∗∗ < A∗, conditional on under-

taking new projects, firms with high idiosyncratic shocks, zt, are more likely to undertake new

unautomated projects, and firms with low idiosyncratic shocks are more likely to undertake

new automated projects.

Proof: This follows directly from Proposition 2.

The intuition of this corollary is straightforward. Because new unautomated projects can

start generating cash flows more quickly than new automated projects, they are preferable to

be undertaken for expansions when firms are doing well.20 This corollary has two implications

in the model. First, it helps generate a stationary distribution of the two types of projects,

since in equilibrium, while existing unautomated projects are switched to automated ones,

new unautomated projects are also undertaken.

Second, this corollary also generates predictions in the cross-section of machinery invest-

ment in good times. Because high-RShare firms, on average, are more likely to have high

firm-specific shocks, they are more likely to hire routine-task labor instead of investing in

machines during good times than low-RShare firms.

Corollary 5 (Cross-section of routine-task employment under positive aggregate shocks):

If A∗∗ < A∗, keeping all else equal, a firm with a high RShare and a high firm-level shock

is more likely to hire routine-task labor than a firm with a low RShare and a low firm-level

shock if the economy experiences a positive shock, that is, dx > 0.
20This argument is consistent with Berger (2012), who argues that firms grow “fat” during booms and

streamline their production during recessions.
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Given that the project-specific shock of any new project is at its long-term mean, the

present value of growth opportunities is a function of the aggregate shock and the firm-

specific shock:

PV GO(t) = Et

∫ ∞
s=0

λ
Λt+s

Λt

max [VU(t+ s)− I, VA(t+ s; t+ s)− IM − I, 0] ds

= G(xt, zt).

(17)

B.4. Firm Value

At any time t, a firm may have nU,t unautomated projects and nA,t automated projects

that the firm previously undertook. Let VU,l(t) denote the value of the lth unautomated

project that the firm undertook, where l = 1, 2, ..., nU,t. Let tk ≤ t denote the time when

the kth automated project was undertaken, and VA,k(tk; t) the value of the kth automated

project, where k = 1, 2, ..., nA,t. Firm value equals the value of all existing projects plus the

present value of growth opportunities:

V (t) =

nU,t∑
l=1

VU,l(t) +

nA,t∑
k=1

VA,k(tk; t) + PV GO(t) (18)

C. Firm Risk

The equity beta of a project or a firm is defined as the scaled covariance of its value and

the stochastic discount factor,

β = −
Cov

(
dV
V

dΛ
Λ

)
Var

(
dΛ
Λ

) . (19)

From equation (18), we know that a firm’s beta is the weighted average of the betas of its

existing projects and the beta of its growth opportunities,

βf =

nU∑
l=1

VU,l
V
βU,l +

nA∑
k=1

VA,k
V

βA,k +
PV GO

V
βPV GO. (20)

To understand the connection between a firm’s RShare and its beta, I examine the riski-

ness of the two types of projects.

I first compare betas of an unautomated project and an automated project with the same

set of shocks {xt, zt, εt}. The assets in place component of the unautomated project is riskier
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than the automated project due to the higher operating leverage induced by the fixed cost

paid to routine-task labor. The switching option, which has a negative beta, lowers the beta

of the unautomated project, making comparison of the two types of projects difficult.

From equation (12), we see that when the project’s cash flows At approach A∗, the value

of the unautomated project approaches the value of a newly initiated automated project

minus the cost of investment in machines IM , that is,

lim
At→A∗+

VU(t) = VA(t; t)− IM . (21)

Under mild parameter restrictions provided in Appendix A.3, a newly initiated automated

project is likely to be less risky than a goods-producing automated project for a given set

of shocks, because skipping T periods of production makes the project value less sensitive

to aggregate shocks. In this case, an unautomated project is less risky than an automated

project with the same set of shocks.

When the project’s cash flows At approach infinity, the switching option is far out of the

money and the value of an unautomated project approaches the value of its asset in place,

that is,

lim
At→∞

VU(t) = V AP
U (t). (22)

Given that the assets in place of the unautomated project is riskier than the goods-

producing automated project, the unautomated project is riskier if At approaches infinity.

Putting these results together, I prove the following in Appendix A.3:

Proposition 3 (Comparison of project risks): If the condition in Appendix A.3 holds, there

exists a threshold of cash flows Ā(t0) ∈ (A∗,+∞) such that an automated project initiated at

time t0 is riskier than an unautomated project with the same set of shocks {xt, zt, εt} when

At < Ā(t0).

The equation that determines Ā(t0) is provided in Appendix A.3.

D. Simulation Results

Given that the risk comparison between automated and unautomated projects holds con-

ditionally in Proposition 3, I simulate the model under economically reasonable parameters

to examine whether the switching option channel is powerful enough to generate lower risk
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premia for high-RShare firms in the cross-section. In addition, this test also helps to examine

whether the predictability of RShare on stock returns is robust to the dynamic setting in

which RShare evolves endogenously.

Panel A of Table 1 summarizes the parameter choices. My model setup shares many

similar features with Kogan and Papanikolaou (2014), who also develop a model at the

project level. Hence, I adopt the parameter values used by Kogan and Papanikolaou (2014)

as many as possible. Specifically, I adopt the parameter values in Kogan and Papanikolaou

(2014) for volatilities of xt, zt and εt, rate of mean-reversion, risk-free rate, and project

obsolescence rate.21 The required time for technology adoption is absent in the model of

Kogan and Papanikolaou (2014). I thus set the required time to be three quarters following

the time-to-build literature (e.g., Kydland and Prescott (1982) find that a reasonable range

for the average construction period is three to five quarters).

Given that Kogan and Papanikolaou (2014) have two factors in their pricing kernel while

my model only has one, I choose the price of risk to match the equal-weighted aggregate

risk premium. Because I assume a constant price of risk in my stochastic discount factor

for tractability, I need an unrealistically high value for the price of risk to match the risk

premium.22 In addition, my model has a much simpler setting for growth opportunities

compared to the model of Kogan and Papanikolaou (2014), I thus set the project arrival rate

to match the aggregate dividend growth rate.

The literature offers less guidance on the cost of different production factors at the project

level. I thus match several moments to pin down these parameters. The per-project cost

for using routine-task labor, cR, and non-routine-task labor, cN , are chosen to match the

aggregate share of routine-task labor in my sample. The rest of the operating cost, f , is

chosen to match the correlation between gross hiring and GDP growth. Cost of project

initiation, I, and cost of machines per automated project, IM , are chosen to match the

correlation between gross investment and GDP growth. See Panel B of Table 1 for the

moments.

Plugging these parameter values into equations (13), (15), and (16), we obtain the optimal
21Kogan and Papanikolaou (2014) use 0, 0.35, and 0.5 as the rates of mean-reversion for the aggregate

shocks, firm-level shocks, and project-level shocks, respectively. My model requires the rate of mean-reversion
to be the same for all levels of shocks. Thus, I choose the rate of mean-reversion to be 0.35 in my simulation.

22It is well-known in the literature that a countercyclical price of risk in the stochastic discount factor is
crucial for generating high risk premium. See alternative specifications of stochastic discount factor in Zhang
(2005) and Jones and Tuzel (2013).
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thresholds for exercising switching options and growth options. Under these parameter values,

A∗ = 0.75 and A∗∗ = 0.81, while the 40th, 50th, and 60th percentiles of At are 0.63, 1.00,

and 1.58, respectively.

[TABLE 1 HERE]

Using the above parameter choices, I simulate the model at monthly frequency (dt = 1/12)

for 1,000 firms over 1,200 periods. I drop the first 600 periods to eliminate dependence on

initial values. I simulate 100 times and calculate the standard errors across simulations. I

describe my procedure for model discretization and simulation in Appendix B.

Table 2 reports portfolio sorting of stock returns by firms’ share of routine task labor

(RShare) using model simulated data. The excess returns monotonically decrease from

14.20% to 11.96% per year from the lowest RShare quintile to the highest RShare quintile.

Comparing the highest and the lowest RShare quintile portfolios yields a −2.24% return

spread per year, which is somewhat smaller than what I find in the data, −3.10%. One

reason could be that the simulation under the parameter values cannot generate enough

cross-sectional dispersion in terms of RShare. The RShare of the five portfolios ranges from

0.06 to 0.22 in the model, but from 0.02 to 0.39 in the data. The market beta shows a similar

monotonically decreasing pattern and has a spread of −0.18 for the long-short portfolio. In

summary, these results suggest that switching options serve as an economically significant

channel that dominates countering forces such as the operating leverage channel and leads

to lower risk premium for high-RShare firms in the model.

[TABLE 2 HERE]

II. Measuring a Firm’s Routine-Task Labor

A. Data and Methodology

My model suggests that a firm’s RShare can be measured as the ratio of the total wages

paid to its routine-task labor relative to its total wage expense (see equation (6)). In this

section, I describe the data and methodology that I use to construct firms’ RShare.

I construct RShare as follows. First, I decompose each firm’s labor cost by its employees’
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occupations. Second, I identify the occupations in each year that can be regarded as routine-

task labor. With these two steps complete, I construct firms’ RShare following the definition

in equation (6).

To obtain firms’ occupational composition, I use microdata at the establishment-occupation

level provided by the OES program of the Bureau of Labor Statistics (BLS). This dataset cov-

ers surveys that track employment by occupations in approximately 200,000 establishments

every six months over three-year cycles from 1988 to 2014. These data represent on average

62% of the non-farm employment in the U.S. The data use the OES taxonomy occupational

classification with 828 detailed occupation definitions before 1999, and the Standard Occu-

pational Classification (SOC) with 896 detailed occupation definitions thereafter. Beyond

occupational information, the microdata also cover establishments’ location and industry af-

filiation, as well as their parent company’s employer identification number (EIN), legal name,

and trade name.

The OES microdata include estimates of the median hourly wage for each occupation

in each establishment from 1997 onwards. For years before 1997, I estimate the hourly

wage from the Census Current Population Survey Merged Outgoing Rotation Groups (CPS-

MORG) obtained from the website of National Bureau of Economic Research. From the

CPS-MORG, I calculate the hourly wage for 504 occupations in 13 broad industries.23 When

possible, I impute the hourly wage for each occupation-industry in the OES microdata.

Otherwise, I use either the estimated nationwide hourly wage for the OES occupation or

the industry-level hourly wage for the major group of the OES occupation. The total wages

paid to an occupation in an establishment is simply the product of the employment and the

hourly wage.

I aggregate establishments to Compustat firms using EINs and supplement the matching

by using legal names.24 The OES program started keeping the parent firm’s EIN for estab-
23CPS-MORG uses the Census Occupation Codes (COC) to classify its occupations and the Census In-

dustry Codes (CIC) to classify its industries. I calculate the average hourly wage of individuals aged 18 to
65 within each COC and broad CIC group, weighted by the personal earnings weights. I build a crosswalk
between COC and OES occupational classifications by first linking both codes to a much more detailed oc-
cupational classification from the Dictionary of Occupational Titles and then assigning a COC occupation
to an OES occupation if the COC occupation overlaps with more than 50% the OES occupation’s detailed
occupation. Similarly, I crosswalk COC to the major groups of OES occupations. I also crosswalk CIC broad
industry groups to 3-digit Standard Industry Classifications, which is the industry classification used in the
OES microdata.

24Some states allow establishments that use professional payroll firms to report the payroll firms’ EINs
instead of the establishment owners’ EINs. I hand-collect the legal names and EINs of professional payroll

18



lishments after 1999. For the sample between 1990 and 1999, I backout the EIN information

by linking the OES establishments through the BLS’s internal identifiers to the Quarterly

Census of Employment and Wages (QCEW) database, which has the EIN for the universe of

establishments over the 1990 to 2014 period. For the OES sample in 1988 and 1989, I match

the establishments to Compstat firms using legal names as no EINs are available. A firm’s

labor composition at year t is captured by the occupation composition for all employees the

firm hires in its establishments in years t − 2, t − 1, and t.25 This procedure identifies the

occupation composition in terms of labor cost for an average of 3857 Compustat firms in

each year from 1990 to 2014.

I next identify routine-task labor in the economy so that I can calculate firms’ RShare.

My methodology is based on a procedure commonly used in the labor economic literature and

is closest to Autor and Dorn (2013). Specifically, I use the revised fourth [1991] edition of the

U.S. Department of Labor’s Dictionary of Occupational Titles (DOT) to obtain descriptions

of occupations classified at a very detailed level. For each DOT occupation, I select the

occupation’s required skill level in performing five categories of tasks: abstract analytic,

abstract interactive, routine cognitive, routine manual and non-routine manual tasks.26 I

re-scale these skill levels to values between 1 and 10. I then take the average of the abstract

analytic and abstract interactive skill levels as the skill level required by the occupation in

performing abstract tasks. Similarly, I take the average of the routine cognitive and routine

manual skill levels as the skill level required by the occupation in performing routine tasks.

Given that the revised edition of the DOT is available after 1991, to avoid using future

information, I employ a similar procedure using data from the fourth [1977] edition of the

DOT to create measures of the required skill level in performing abstract, routine, and non-

firms and exclude establishments with legal names or EINs that match the payroll firms. Another concern
is that some firms may have multiple EINs, especially for large firms that operate in multiple states. Failure
to identify all EINs with common ownership would lead to measurement error in RShare and increase the
standard errors in my analysis. Supplementing the matching using legal names improves the number of
matches marginally, since the names are subject to typing errors and missing information. In unreported
analysis, I conduct a fuzzy matching via legal names using stata ado file “reclink” written by Michael Blasnik.
The resulting measure is very close to the RShare measure.

25I include the establishments from the past two years because the OES survey covers each establishment
in 3-years cycles. This methodology provides better coverage of a firm’s operation than using only firms’
establishments at year t.

26Specifically, abstract analytic skill is measured by mathematical skill. Abstract interactive skill is mea-
sured by direction, control, and planning skills. Routine cognitive skill is measured by skills in setting limits,
tolerances, or standards. Routine manual skill is measured by finger dexterity. Non-routine manual skill is
measured by eye-hand-foot coordination skill.
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routine manual tasks for occupations before 1991.

I crosswalk the 1977 DOT occupations to the OES occupations for the 1988 to 1990

period and crosswalk the 1991 DOT occupations to the OES occupations for the 1991 to

2014 period. The task skill measures for the OES occupations are the average of the skill

measures for the corresponding DOT occupations following a weighting approach proposed

by Autor, Levy, and Murnane (2003).27

Following Autor and Dorn (2013) and Autor, Dorn, and Hanson (2013), I define the

routine-task intensity (RTI) score for each OES occupation as

RTIk = ln(TRoutine
k )− ln(TAbstract

k )− ln(TManual
k ), (23)

where TRoutine
k , TAbstract

k , and TManual
k are the routine, abstract, and non-routine manual task

skill levels required by occupation k, respectively.

Routine-task labor is defined as follows. In each year, I select all workers in the OES sam-

ple in the current year as well as the previous two years to represent the current year’s labor

force. I then sort all workers in the selected sample by their occupations’ RTI scores. I define

workers as routine-task labor if their RTI scores fall in the top quintile of the distribution for

that year.28

I construct RShare, the share of routine-task labor, for each firm in year t as

RSharej,t =
∑
k

1
[
RTIk > RTIP80

t

]
× empj,k,t × wagej,k,t∑

k empj,k,t × wagej,k,t
, (24)

where 1[·] is the index function, RTIk is the RTI score of occupation k, RTIP80
t is the 80

percentile of RTI scores for the labor force at time t, and empj,k,t and wagej,k,t are the number

of employees and the hourly wages of occupation k in firm j at time t, respectively.
27The DOT occupational classification is much finer than the OES taxonomy classification or the SOC.

Thus, the crosswalk from DOT to OES occupations is a simple aggregation. Following Autor, Levy, and
Murnane (2003), I use the April 1971 CPS sample to obtain the employment weights of the 1977 DOT
occupations in the population. DOT occupations that do not appear in the April 1971 CPS sample is assigned
with minimal population (i.e. one person) in the employment weights calculation. I use the crosswalk of 1977
DOT to 1991 DOT occupations provided by David Autor to obtain population weights for the 1991 DOT
occupations. I aggregate the task skill levels from DOT to OES occupations using the employment weights.

28In the Internet Appendix, I classify routine-task labor at alternative cutoffs, such as the top quartile of
the RTI score distribution, and find very similar results in all of the main tests. The OES survey changed
design in 1996, making it difficult to represent the total labor force. I thus use the 1995 definition of routine-
task labor to proxy for the total labor force in 1996. The definition of routine-task labor for 1997 is based
on the sorting of workers in the 1996 and 1997 samples.
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I finalize my sample selection by imposing additional requirements based firms’ accounting

and stock return information. Appendix C provides a detailed description of the sample

selection as well as definitions of financial and accounting variables. I end up with 47,684

firm-year observations in 17 industries based on the Fama and French (1997) classification.

B. Validation

B.1. Characteristics of Routine-Task Labor

To evaluate my measure of routine-task labor, I examine the characteristics of occupations

identified as routine-task labor. Panel A of Table 3 shows that while routine-task labor

accounts for a large portion of the clerical, production, and sales occupations, which is

consistent with previous studies (e.g., Jaimovich and Siu (2014)), it also accounts for a

significant portion of the service, professional, and agriculture occupations.

Routine-task labor can potentially be misinterpreted as occupations that can be out-

sourced to foreign countries such as China and India. If they are indeed the same, routine-

task labor should primarily capture the occupation’s substitutability by remote but low-cost

labor instead of substitutability by machines. Blinder (2009) and Blinder and Krueger (2013)

argue that essentially any job that does not need to be done in person can ultimately be out-

sourced, regardless of whether it is routine or non-routine. Using the offshorability measure

of occupations created by Acemoglu and Autor (2011), I find supporting evidence. In partic-

ular, Panel B of Table 3 shows that offshorability has a small negative correlation with both

the routine-task labor dummy and the RTI score, indicating that these measures capture

different aspects of an occupation.

Many economists argue that jobs susceptible to technological substitution tend to be

those of middle-class workers with moderate skills. Consistent with this argument, I find a

moderate negative correlation of the routine measures and occupations’ median wages and

skills. When I further examine whether routine-task workers are more likely to be covered by

labor unions, I find no significant correlation between these two attributes, suggesting that

unions are unlikely to be a major factor in hiring routine- versus non-routine-task labor.29

29I obtain the union coverage rate for occupations from www.unionstats.com. This union coverage rate is
compiled by Barry Hirsch and David Macpherson from the Current Population Survey and updated annually.
See Hirsch and MacPherson (2003) for a description of the database. The union coverage rate is given at the
COC classification. I crosswalk COC to SOC classification to obtain the union coverage rate for the OES
sample in 1999-2014.
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In summary, the above results suggest that my measure of routine-task labor is consistent

with the characteristics of jobs that can be substituted by machines.

[TABLE 3 HERE]

B.2. Employment over the Business Cycle

I examine routine-task labor by providing graphic evidence on the dynamics of routine-

task labor’s employment over the business cycle. Such evidence is helpful for understanding

firms’ decisions on hiring routine-task labor in different economic states, and for linking

firms’ RShare and their exposure to systematic risk. While my measure of routine-task

labor, constructed based on the OES data, can be used to capture the time-series impact

of technological evolution in replacing labor, it is not suitable for time-series analysis that

requires tracking a given set of occupations over time. Moreover, the OES data, based on

surveys that cycle each establishment every three years, cannot track changes in routine-task

labor at the business cycle frequency.

Conventional methods used in the labor economics literature is not helpful either. A large

body of this literature examines the time series of routine-task labor’s employment and wages

using data from the Census Bureau at the decennial frequency. Such data are not suitable

for employment dynamics over the business cycle, which is traditionally defined at the 18-

to 96-month frequency. Jaimovich and Siu (2014), who classify routine-task labor based on

three major occupation groups, suggest that the CPS monthly sample is helpful for studying

the business cycle. I thus adopt a hybrid methodology whereby I define high-routine and

low-routine occupations based on the distribution of RTI scores using the 1980 Census data,

and examine the business cycle dynamics of the two occupational groups using the CPS

monthly basic data.

Following Autor and Dorn (2013), I sort the labor force of the 1980 Census by the RTI

score of employees’ occupations, constructed using the 1977 DOT. I classify occupations with

RTI scores that fall in the top and bottom 30% of the distribution as high-routine and low-

routine occupations, respectively.30 In each month, I aggregate workers in the CPS sample
30The occupations in the top 30% of the 1980 Census distribution closely matches my measure of routine-

task labor in 1990, which is defined as the top quintile of the 1990 OES distribution. Autor and Dorn (2013)
use the top 33% cutoff to identify routine-task labor.
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whose occupations belong to the high-routine or low-routine occupations into two groups,

weighted by the sampling weights. I track the employment series of the two groups from

January 1989 to December 2013.31

Figure 1 plots employment dynamics separately for high-routine occupations and low-

routine occupations. Consistent with the literature, we see that the employment of high-

routine occupations declines over time, while the employment of low-routine occupations

rises. More importantly, the major decreases in the employment of high-routine occupations

occur mostly during or shortly after economic recessions. In contrast, the employment of

high-routine occupations does not show a significant trend during the expansionary periods.

Put together, we see high-routine jobs decline during recessions but do not bounce back

during the recovery periods. This supports my model’s prediction that firms replace routine-

task labor with machines in bad times.

[FIGURE 1 HERE]

B.3. Wages and Machine Prices over the Business Cycle

I further examine the dynamics of wages and machine prices over the business cycle

to investigate possible alternative channels that link routine-task labor and firms’ exposure

to systematic risk but are not captured in my model. Specifically, if machine prices drop

significantly in bad times, or if routine-task labor is more willing to accept flexible wages

than non-routine-task labor, high-RShare firms can more easily reduce their labor costs in

bad times than low-RShare firms. Both channels can consequently lead to the negative

relation between firms’ RShare and their exposure to systematic risk, although the flexible

wage channel cannot explain the lack of recovery of routine-task labor after recessions.

Panel A of Figure 2 plots the quality-adjusted price of equipment from Israelsen (2010) in

1989-2012. This price index is aggregated from the prices of 22 groups of durable equipment

and is used in earlier studies as informative about investment-specific technology shocks (see,

for example, Kogan and Papanikolaou (2014)). From the plot, we see that the price of ma-
31CPS occupation codes changed several times during my sample period. I crosswalk the occupation codes

of different years to a unified occupation classification occ1990, which is available at the Integrated Public Use
Microdata Series maintained by the University of Minnesota. Due to a major change in the CPS occupational
classification in 1988, I construct the employment series of high-routine and low-routine occupations starting
from January 1989.
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chines declines smoothly over time and does not exhibit sizable business cycle properties. In

addition, following Kogan and Papanikolaou (2014), I calculate the changes in the detrended

log relative real price of equipment to proxy for shocks to machine prices. I find that the

correlation between the machine price shocks and the real GDP growth is -25%, indicating

that machine prices do not move in the same direction as the aggregate economic states.

Panel B of Figure 2 plots the average hourly wages of high-routine occupations and low

routine-occupations from 1989 to 2012 using the sample of the CPS-MORG. The nominal

hourly wage for each occupation is the average hourly wage of individuals in that occupation

and further aggregated to the high-routine and low-routine group level, weighted by their

personal earnings weights. Again, we do not see sizable business cycle properties in the

wages of high-routine occupations. In addition, the correlation between the changes in the

detrended log real wages for the high-routine and low-routine occupations and real GDP

growth are 7% and 18%, respectively. Hence, wages for routine-task labor are not more

procyclical than wages for non-routine-task labor.

In summary, the evidence mitigates the concern that my model does not take into account

the cyclicality of machine prices and wages.

[FIGURE 2 HERE]

B.4. Evidence from the Job Creation and Worker Assistance Act of 2002

I provide more direct evidence on the substitution of routine-task labor by machines

by exploring an unanticipated law introduced in October 2001, namely, the Job Creation

and Worker Assistance Act of 2002 (JCWA Act). The JCWA Act offers a 30% tax bonus

on new qualified property, mostly machinery and equipment, acquired by companies after

September 10, 2001, and placed in to service before September 11, 2004. Comparative

statics in my model suggests that shocks that lower machine prices will make firms more

willing to replace their routine-task labor with machines. Taking the tax bonus as a shock

that lowers the price that firms pay for machines, my model predicts that we should see an

extra decline in routine-task labor compared to the case without the shock.32 I conduct a

simple counterfactual experiment using the employment series of high-routine occupations
32Zwick and Mahon (2014) study JCWA Act and firm investment and find that firms respond to the tax

bonus by increasing more than 17% of their investments between 2001 and 2004.
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constructed in the previous section. Specifically, I ask what would have happened during and

after the 2001 recession if the JCWA Act had not been introduced in October 2001.

I match the employment series in the 1990 recession with those in the 2001 recession by

pairing July 1990 with March 2001, the starting months of the two recessions. I use the

employment series of high-routine occupations and low-routine occupations from October

2000 to October 2002 as the actual data, and use the series from February 1989 to February

1991 as the counterfactual data.33 I then re-scale the counterfactual series to match the

magnitude of the decline in actual employment from the starting month of the 2001 recession

(March 2001) to the month in which JCWA Act was introduced (October 2001).

Figure 3 presents the results. Consistent with my model’s prediction, we see that employ-

ment of high-routine occupations dropped by an additional 0.9% within one year after the

introduction of the JCWA Act, while the counterfactual series increased by 0.2% at the same

time. The difference in percentage employment changes between actual and counterfactual

series converts to 0.3 million (1.1% × 29 million) jobs lost in high-routine occupations in the

one year after the introduction of JCWA Act. The actual and counterfactual employment

series of low-routine occupations, however, do not show much difference.

[FIGURE 3 HERE]

III. Empirical Evidence

The model predicts that in response to unfavorable aggregate shocks, firms with a high

share of routine-task labor invest more in machines (Corollary 1) and reduce more of their

routine-task labor (Corollary 2) than firms with a low share of routine-task labor, and vice

versa if the economy experiences favorable aggregate shocks (Corollary 4 and 5). Due to the

hedging channel against unfavorable aggregate shocks, firms with a high share of routine-task

labor have lower exposure to systematic risk (Corollary 3). In this section, I empirically test

these predictions.
33The two series are further logged and band-pass filtered to remove fluctuations at frequencies higher than

12 months. See Christiano and Fitzgerald (2003) for details about band-pass filters, and Jaimovich and Siu
(2014) for a discussion on the advantages of using a band-pass filter in non-quarterly data.
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A. Routine-Task Labor and Firm Characteristics

Panel A of Table 4 reports the mean and standard deviation of firms’ RShare and the

number of firm-year observations in each industry sector. The results show that routine-

task labor is well-dispersed across industry sectors, with the retail and manufacturing sectors

having slightly more routine-task labor, on average. Hence, RShare is not likely to be driven

by a particular industry. Moreover, the standard deviation of firms’ RShare is also large in

each sector, providing statistical power to my within-industry empirical tests.

I next examine how differences in firms’ RShare are related to other firm characteristics.

To do so, for each year, I sort firms in each Fama-French 17 industry into five portfolios

based on their RShare. I use within-industry sorting to mitigate the concern that different

industries’ production technologies may require different intensities of routine-task input

relative to non-routine-task input in practice, but my model assumes the intensity to be

fixed for all projects.

Panel B of Table 4 shows that high-RShare firms have lower ratios of machine to assets

and machine to routine-task labor, suggesting that these firms adopt labor-saving technology

to a lesser extent than low-RShare firms. Consistent with the argument that routine-task

labor is more costly to use than machines, I find that high-RShare firms have higher operating

leverage. In addition, consistent with the model prediction that firms maintain high RShare

because they have not experienced negative shocks to cash flows, I find that high-RShare

firms have much higher cash flows than low-RShare firms. I also find that high-RShare firms

have larger size, higher book-to-market, and higher financial leverage.

Finally, I examine whether routine-task labor is a persistent firm characteristic. My model

suggests that after exercising their switching options, high-RShare firms reduce their RShare

due to technology switching. To test this prediction, I examine the transition probability of a

firm changing from one RShare quintile in a year, sorted within industry, to another RShare

quintile in the next year. Panel C of Table 4 shows that, on average, 24% to 40% of firms opt

out of their current quintile portfolio in the next year, implying that RShare is a relatively

dynamic firm characteristic.

[TABLE 4 HERE]
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B. Inspecting the Mechanism

My model suggests that high-RShare firms can replace routine-task labor with machines

to a greater extent than low-RShare firms in response to unfavorable aggregate shocks. To

test this prediction, I examine firms’ response to aggregate shocks in terms of their investment

in machines and their routine-task employment conditioning on their RShare.

B.1. Investment in Machines and Aggregate Shocks

Here, I show that high-RShare firms invest more in machines than low-RShare firms when

aggregate shocks are low. Investment in machines is measured by the real annual growth in

machinery and equipment at cost (Compustat item FATE) from the property, establishment,

and equipment section of a firm’s balance sheet. The advantage of using an “at cost” measure

is that it does not take into account amortization and depreciation. Hence, any year-over-

year change in this variable can be attributed largely to firm investment or divestment. I use

the growth in real GDP value added as a proxy for aggregate shocks.34

In the first four columns of Table 5, I run the following panel regression:

IMf,t = b0 + b1RSharef,t−1 + b2RSharef,t−1 × Shockt + cXf,t−1 + Ff + FInd×Y ear + εft, (25)

where IMf,t is firm f ’s investment in machines in year t, RSharef,t−1 is the firm’s RShare

at the beginning of the year, Shockt is the aggregate shock in year t, Xf,t−1 is other firm

characteristics that are known to predict investment, including the logarithm of Tobin’s Q,

market leverage, cash flows, cash holdings, and the logarithm of total assets; and Ff and

FInd×Y ear denote firm and industry-year fixed effects, respectively.35

The first two columns of Table 5 report results of regressions without and with controls for

firm characteristics using all sample years from 1990 to 2014. I find negative and significant

estimates for b2, implying that high-RShare firms indeed invest more in machines than low-

RShare firms in bad times.36 In response to a 2% drop in real GDP growth, a firm with
34Alternatively, we could use the aggregate total factor productivity (TFP) series provided by the Federal

Reserve Economic Data to proxy for aggregate shocks. The disadvantage of the TFP series is that it is only
available up to 2011.

35In the Internet Appendix, I also control for the cross-term of firm characteristics and the aggregate shock
for robustness check.

36Using GDP growth as aggregate shocks helps to examine my model predictions on machinery investment
in both good times and bad times. To focus on investment in bad times, I conduct a difference-in-differences
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RShare one standard deviation higher than its industry peers has machinery investment

0.4% higher.

One caveat is that the Job Creation and Worker Assistance (JCWA) Act introduced at the

end of the 2001 recession may have significant impact on the machinery investment in high-

RShare firms and low-RShare firms. If high-RShare firms respond to the lowered machinery

prices by investing more in machines than low-RShare firms, one may be concerned that the

results I obtained in the first two columns of Table 5 are not driven by the aggregate shocks

but instead by shocks to machine prices. To mitigate this concern, I conduct the test by

excluding the years 2002-2004 in Columns (3) and (4), when JCWA Act is active, and find

my results remain.

Another concern is that high-RShare firms may have less procyclical capital investment

than low-RShare firms due to factors not observed by economists. To assess this possibility,

I conduct a placebo test in which I run the same panel regression but examine investment in

other capital rather than machines.37 The last two columns of Table 5 report insignificant

results on the cross term. Hence, we do not see that high-RShare firms respond to aggregate

shocks differently from low-RShare firms in terms of investment in other capital. However,

given that both the coefficients and the the standard errors are larger, it is possible that my

test may have low statistical power in detecting a significant results in the placebo test. The

different results across investment in machines and investment in other capital support the

view that machines, in contrast to other capital, are closely related to routine-task labor.

[TABLE 5 HERE]

B.2. Routine-Task Employment and Aggregate Shocks

Here, I show that high-RShare firms lay off disproportionally more routine-task labor

than low-RShare firms when aggregate shock is low. Measuring changes in routine-task

labor at the firm level is difficult due to data limitations. Specifically, given that the OES

test using recessions as productivity shocks and analyze the high-RShare and low-RShare firms’ investment
in machines before and after the shocks in the Internet Appendix. I find that the changes in high-RShare
firms’ investment in machines are significantly more positive than the changes in low-RShare firms’ invest-
ment in machines in 1 year, 2 years, or 3 years after recessions.

37Other capital is the difference between property, plant, and equipment at cost (Compustat item PPEGT)
and machinery and equipment at cost (FATE). Investment in other capital is the real growth rate of other
capital.
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survey covers the same establishment every three years, a firm’s routine-task labor in a given

year is measured based on the firm’s establishments that appear in the OES sample both in

the current year and over the prior two years. Hence, the year-over-year changes in a firm’s

routine-task labor captures the actual hiring and firing of routine-task labor in only one-third

of its establishments, since the firm’s routine-task labor in the current year and the following

year are constructed using the same OES observations in the overlapping periods.

To avoid the above concern, I conduct the analysis at the establishment level. There are

two advantages of using establishment-level data in this analysis. First, doing so overcomes

the overlapping-periods issue associated with a firm-level analysis. Second, the establishment-

level data provide more detailed information than the firm-level data, such as establishments’

location, which is helpful for controlling for local labor-market heterogeneity.

I construct three proxies of establishments’ change in routine-task employment. The first

measure is the change in establishments’ routine-task employment from three years before

to the current year normalized by their total number of employees three years before. The

second measure is the change in establishments’ RShare constructed based on employment

in each occupation instead of total wage expense following equation (24) from three years

before to the current year. The third measure is the change in establishments’ RShare from

three years before to the current year. In constructing each of the three measures, routine-

task labor both in the current year and three years before is defined based on the RTI score

distribution in the economy three years before. Aggregate shocks in this analysis are defined

as the real growth in GDP value added from three years before to the current year.

Panel A of Table 6 reports the results of the following panel regression:

ChgRoutinee,f,t−3,t = b0 + b1RSharee(f),t−3 + b2RSharee(f),t−3 × Shockt−3,t

+ Ff + FInd×Y ear + FState×Y ear + εe,f,t,
(26)

where ChgRoutinee,f,t−3,t is one of the three proxies of the change in routine-task employment in

firm f ’s establishment e from year t− 3 to year t, RSharee(f),t−3 is the establishment or its

parent firm’s RShare in year t − 3, Shockt−3,t is the aggregate shock from t − 3 to t, and

Ff , FInd×Y ear, and FState×Y ear denote the firm, industry-year, and state-year fixed effects,

respectively. While industry-year fixed effects control for intrinsic production technology in

terms of routine-task input and non-routine-task input, state-year fixed effects control for the
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time-varying effect of local labor market conditions, such as state labor laws, or fluctuations

in local wages (see Tuzel and Zhang (2015)).38

In Column (1) of Panel A in Table 6, we see that high-RShare firms are more likely

to reduce routine-task labor in their establishments than low-RShare firms when aggregate

shocks are low. Columns (3) and (5) further shows that reduction in routine-task labor during

bad times is disproportionally higher in establishments of high-RShare firms than low-RShare

firms. Hence, high-RShare firms respond to unfavorable aggregate shocks by undertaking a

structural change in their production inputs that narrows their RShare gap with low-RShare

firms.

It is possible that different establishments within a firm may have different RShare. In

addition, Giroud and Mueller (2015) show that firms reallocate capital and labor among

establishments within the firms when facing investment opportunities. To check whether

firms are indeed replacing their routine-task labor in high-RShare establishments, I use the

establishment’s RShare in Columns (2), (4), and (6) as the independent variable. I find

that high-RShare establishments respond to unfavorable macroeconomic shocks by reducing

more routine-task labor and lowering both of their employment-based RShare and RShare.

These results show that my results are robust to within-firm resource reallocation.

These results, together with the previous results on firms’ investment in machines, support

my model’s prediction that high-RShare firms have more switching options to replace routine-

task labor with machines when facing unfavorable aggregate shocks.

My model suggests that in response to a favorable aggregate shock, high-RShare firms

are more likely to undertake new unautomated projects that increase their establishments’

RShare. I test this prediction by examining the RShare of newly opened establishments in

high-RShare firms and low-RShare firms. An establishment is identified as newly opened in

a given year if it does not exist in the prior year of the QCEW data, which cover the universe

of establishments in the U.S. from 1990 to 2014.39

38Examples of state labor laws that could affect firm decisions are wrongful-discharge laws (see Serfling
(2015)) and right-to-work laws (see Matsa (2010) and Chen, Kacperczyk, and Ortiz-Molina (2011)).

39QCEW draws establishment information from the unemployment insurance (UI) agency. Employers of
new establishments are required by law to report to UI and pay unemployment taxes if: (1) they pay wages
to employees totaling $1,500 or more in any quarter of a calendar year, or (2) they had at least one employee
during any day of a week during 20 weeks in a calendar year, regardless of whether or not the weeks were
consecutive. For more details see http://workforcesecurity.doleta.gov/unemploy/uitaxtopic.asp
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Panel B of Table 6 reports results of the following panel regression:

RShare
Est,(Emp)
e,f,t = b0 + b1RSharef,t−1 + b2RSharef,t−1 × Shockt

+ Ff + FInd×Y ear + FState×Y ear + εe,f,t,
(27)

where RShareEst,(Emp)e,f,t is the RShare or the employment-based RShare of establishments

in year t, RSharef,t−1 is the RShare of the establishment’s parent firm’s RShare in year

t − 1, Shockt is the real growth rate of GDP value added in year t, and Ff , FInd×Y ear, and

FState×Y ear denote the firm, industry-year, and state-year fixed effects, respectively. The

results show that a positive and significant estimation of b2, implying that in response to

favorable aggregate shocks, high-RShare firms are more likely to hire routine-task labor in

their new establishments than low-RShare firms.

[TABLE 6 HERE]

C. Asset Prices

My model implies that high-RShare firms have lower exposure to systematic risk and

expected returns. I test this implication below.

C.1. Portfolio Analysis

I explore firms’ stock returns using portfolio analysis. Specifically, at the end of each

June, firms in each Fama-French 17 industry are sorted into five equally weighted portfolios

based on their share of routine-task labor, RShare. From Panel B of Table 4, RShare varies

from 0.02 for the lowest quintile portfolio to 0.39 for the highest quintile portfolio on average.

In Panel A of Table 7, I find that excess returns monotonically decrease from the lowest

RShare quintile to the highest RShare quintile, yielding an average of −3.1% return spread

per year. The Sharpe ratio for the long-short portfolio is 0.11, which is lower than that for

anomalies that cannot be explained by market risk, such as the value premium, which has a

Sharpe ratio of 0.39 (see, for example, Zhang (2005)).

My model assumes that firms are all-equity financed. In practice, firms may also issue

debt to finance their investment. If firms issue debt to finance their labor-technology substi-

tution, low-RShare firms are expected to have higher financial leverage and, in turn, higher
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returns. To address this concern, I first show in Panel B of Table 4 that low-RShare firms

have lower financial leverage than high-RShare firms, on average. To further address poten-

tial time-varying financial leverage between low-RShare and high-RShare firms, I calculate

firms’ unlevered returns following the simple approach by Donangelo (2014), and conduct the

portfolio analysis using the excess unlevered returns. The unlevered returns are calculated

according to

RUlevered
f,m,y = RFm,y +

(
RRaw
f,m,y −RFm,y

)
(1−Mkt.Levf,y−1) , (28)

where RRaw
f,m,y is the monthly stock return of firm f in month m of year y, RFm,y is the one-

month Treasury bill rate in month m of year y, andMkt.Levf,y−1 is the market leverage ratio

for firm f at the end of year y − 1.

Panel B of Table 7 reports the results of excess unlevered returns and the two correspond-

ing market betas for firms in five RShare portfolios sorted within industry. Similar to the

results using raw excess returns, the portfolio that longs the highest RShare portfolio and

shorts the lowest RShare portfolio observes negative and significant return spreads, indicating

that financial leverage is not driving the main results.

In my model, firms’ RShare and other characteristics such as size and book-to-market are

interrelated. Hence, my model does not claim that RShare predicts cross-sectional risk and

returns after controlling for firms’ other characteristics. Nevertheless, as a robustness check,

I repeat the portfolio analysis using stock returns adjusted for firm characteristics following

Daniel, Grinblatt, Titman, and Wermers (1997) (DGTW). I construct the DGTW-adjusted

returns by taking the difference between stocks’ raw returns and the benchmark portfolio’s

returns. The benchmark portfolio is constructed by sequentially sorting all common stocks

in the CRSP universe into 125 portfolios based on size, industry-adjusted book-to-market,

and momentum (see Daniel, Grinblatt, Titman, and Wermers (1997) for more details).

Panel C shows that the relations between RShare and firms’ exposure to systematic risk

and expected returns are robust to adjusting returns with the characteristics-based bench-

marks.

[TABLE 7 HERE]
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C.2. CAPM Betas

I explore firms’ exposure to systematic risk, proxied by unconditional and conditional

market betas under the CAPM framework. Table 8 shows that both of the two market betas

decrease monotonically with RShare. A portfolio that longs the highest RShare portfolio

and shorts the lowest RShare portfolio has an unconditional market beta of −0.23 and a

conditional beta of −0.29, both of which are highly statistically significant. I do not find

significant differences in alpha between the high-RShare and low-RShare quintiles in either

unconditional or conditional CAPM, indicating that the excess returns are explained by

market betas.40

[TABLE 8 HERE]

C.3. Panel Regressions

In my model, other firm characteristics, most prominently operating leverage and cash

flows, are closely related to firms’ share of routine-task labor. At the same time, each char-

acteristic captures different firm attributes, with RShare most directly related to the value

of firms’ switching options to replace routine-task labor with machines. In this section, I

control for these characteristics directly in panel regressions as follows:

βCondf,t = b0 + b1RSharef,t−1 + b2Charf,t−1 + FInd×Y ear + εf,t

Rf,t −RFt = b0 + b1RSharef,t−1 + b2Charf,t−1 + FInd×Y ear + εf,t,
(29)

where βCondf,t is the conditional beta, constructed following Lewellen and Nagel (2006) as

the sum of the coefficients for the contemporaneous and lagged monthly market returns

when regressing firm f ’s monthly excess returns on them in year t (also see Dimson (1979)),

Rf,t−RFt is the annual excess return of firm f in year t, RSharef,t−1 is the share of routine-

task labor of firm f in year t − 1, Charf,t−1 are the other firm characteristics in year t − 1,

and DInd×Y ear denotes the industry-year fixed effects.

High-RShare firms may have higher operating leverage than low-RShare firms, given
40In the Internet Appendix, I decompose the market betas for each portfolio into cash flow betas and

discount rate betas following Campbell and Vuolteenaho (2004), and find that cash flow betas account for
slighter more than half of the market betas, providing supporting channels through which market betas
explain excess returns in my test.
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that routine-task labor is more costly to use than machines. This channel leads to a positive

relation between RShare and firm risk, which goes against my main channel and hence

works against finding significant results. Table 9 shows that RShare is a robust predictor of

conditional beta (in Panel A) and future annual excess returns (in Panel B) after controlling

for operating leverage as constructed following Novy-Marx (2011).

Cash flows affect firm risk in a more subtle way in my model. The fact that high-RShare

firms have automated fewer of their unautomated projects than low-RShare firms indicates

that high-RShare firms may have experienced higher idiosyncratic shocks to their projects’

cash flows in the past. Given that the shocks are persistent, these firms may be expected

to keep earning higher cash flows in the future, making their value less sensitive to negative

systematic shocks and thus less risky. To address this alternative channel, I control for firms’

cash flows in the panel regressions and find that RShare continues predict firms’ conditional

beta and future annual excess returns.

I also test the predictive power of RShare by controlling for firms’ market leverage, size,

and book-to-market; and I find that RShare persistently predicts firms’ conditional betas

and annual excess returns. Controlling for all firm characteristics, the results show that

a one standard deviation decrease in RShare (16% in Table 4) increases a firm’s expected

return by 1.4% (16%× 8.69%) per year. Finally, I run the panel regression across all firms,

instead of within industry, and find that the coefficient for RShare becomes more economically

significant compared to when industry fixed effects are added. Hence, my results, based on the

within-industry analysis, provide a conservative estimation of the relation between RShare

and firms’ systematic risk and expected returns.

[TABLE 9 HERE]

In Table 10, I present my main return regression results under various assumptions for

the correlation structure of the residuals. In the first four columns, I double-cluster the

standard errors by year and firm following Petersen (2009). In the last two columns, I run

monthly cross-sectional regressions of future excess returns on RShare, firm-level control

variables, and with and without industry dummies; and I report time series average of the

coefficients (Fama and MacBeth (1973)). I find that the results are robust to these alternative

specifications.

In summary, the robustness tests above strengthen the interpretation of RShare as a
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proxy for the value of firms’ options to replace routine-task labor with machines.

[TABLE 10 HERE]

C.4. Measurement Error in RShare

I further check whether the results are robust to measurement error in RShare. A firm’s

RShare is calculated based on the occupational composition of its establishments that have

the same EIN as in the firm’s annual report. In practice, a firm may have multiple EINs.

Most of such cases occur when the firm operates in multiple states and has different EINs

for different states. The EINs in firms’ annual reports are usually the EINs of the firms’

headquarters. Hence, my RShare measure is likely to capture the labor composition for

establishments in the states where the firm’s headquarters is located. It is not obvious

to see whether measurement error in RShare due to this reason is likely to create a biased

estimation of its stock return predictability. However, measurement error, if it exists, is likely

to attenuate the significance of my estimation. I confirm these conjectures using subsample

analysis.

In Panel A of Table 11, I examine the predictability of RShare on annual stock returns in

two subsamples. In one subsample, the ratio of firms’ total number of employees, identified

in the OES microdata, to that in the Compustat data is below the median ratio of the

year. In the other subsample, the ratio is above the median. I do not find any sizable

difference in the predictability of RShare on annual stock returns in these two subsamples.

The coefficient of RShare is −8.11 when using the former subsample and −9.24 when using

the latter subsample, both of which are very close to the coefficient estimated using the full

sample, −8.69. This result indicates that measurement error, investigated without relating

directly to firms’ geographic dispersion, is not severe.

Given that measurement error in RShare is likely to be more severe for firms that operate

across multiple states, I further investigate the predictability of RShare on stock returns

conditional on the dispersion of firms’ operation across states. Garcia and Norli (2012)

define firms as geographically focused if few state names are mentioned in the firms’ annual

reports. Garcia and Norli (2012) report that the average state count for the firms in the

highest geographical focus quintile is two. I thus classify firms that mention two or fewer
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states in their annual reports as geographically focused firms. Panel B shows that RShare

indeed has a stronger return predictability among geographically focused firms than among

geographically dispersed firms, suggesting that measurement error in RShare is less severe

among geographically focused firms. Nevertheless, the return predictability of RShare is still

highly significant among geographically dispersed firms.

In addition, Tuzel and Zhang (2015) examine establishment locations for over 2,000 public

firms in 2014 using the ReferenceUSA data. They find that small firms are much more

geographically focused. Hence, I further divide my sample into two groups based on whether

the firm’s market capitalization is above or below the median of the year. I find that RShare

predicts annual stock returns more significantly, both economically and statistically, among

small firms than among large firms. In Panel C, the coefficient of RShare is −12.77 for small

firms and −3.33 for large firms. Hence, measurement error in RShare seems to be less severe

among small firms, which are likely to operate locally. This finding also indicates that the

stock return predictability of RShare is driven mostly by small firms.

[TABLE 11 HERE]

C.5. Option Exercise in Recessions

I further examine the connection between firms’ option to replace routine-task labor with

machines and their exposure to systematic risk by directly examining the consequences of

recessions. My model suggests that after a significant negative aggregate shock, like the

shocks that occurred during recessions, high-RShare firms replace their routine-task labor

with machines to a greater extent than do low-RShare firms. Hence, after recessions, high-

RShare firms exercise more of their switching options, making them more similar to low-

RShare firms in terms of both their production structures and their market betas.

I confirm this prediction in Table 12. Using the 2001 and 2008-09 recessions, I track the

two groups of firms over the four years starting in the year prior to each recession. Specifically,

I sort firms in each Fama-French 17 industry into five portfolios based on their RShare in

the year prior to each recession (i.e., in 2000 or 2007) and hold the portfolio formation

constant over the observation period. For each portfolio, I track the ratio of machines to

total employment, operating leverage, as well as its market beta. Firms are required to have
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non-missing information over all four years to avoid selection bias.

Table 12 shows that the differences between the machine-to-employment ratio of the

high-RShare firms and low-RShare firms narrow from 14 thousand dollars per worker to 11

thousand dollars per worker and become statistically insignificant. Consistent with the model

assumption that routine-task labor is more costly to use than machines, the gap in operating

leverage between high-RShare and low-RShare firms narrows by more than 10% and becomes

statistically insignificant.

More importantly, the market betas for the two groups of firms are much closer to each

other after recessions. This result is consistent with the model prediction that high-RShare

firms exercise their hedging options relatively more than low-RShare firms, which narrows

the differences in their exposure to systematic risk.

[TABLE 12 HERE]

IV. Conclusion

Technology continuously changes the way our economy produces. With the arrival of

new technology, some human skills are upvalued by better tools, while other skills become

redundant and are ultimately replaced by new tools. The adoption of new technology to

save labor cost often represents an important way for firms to improve efficiency. However,

firms do not always adopt new technology upon its arrival. In deed, as I show in this paper,

firms tend to wait until economic downturns to adopt labor-saving technology. This link

between technology adoption and the business cycle provides a previously unexplored source

of systematic risk and has important implications for the cross-section of stock returns.

To illustrate this point, I develop a dynamic model that shows that a firm’s option to

replace routine-task labor with machines reduces the firm’s sensitivity to unfavorable macroe-

conomic shocks and thus lowers its exposure to systematic risk. The key insight of my model

is that adopting machines takes time, as the firm needs to adapt the technology embodied

in the machines to its own projects. During this technology adoption period, the projects’

production is interrupted. Hence, it is less costly for the firm to launch labor-technology

substitution in bad times than in good times. As a result, in the cross-section, firms with

more routine-task labor have more opportunities to improve their value in bad times and
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thus have lower exposure to systematic risk.

I present novel empirical evidence that supports the main predictions of the model. Using

detailed establishment-occupation level data, I calculate the proportion of a firm’s total labor

costs that can be potentially eliminated with automation, namely, the share of routine-task

labor, for publicly traded firms in the U.S. I find that firms with a high share of routine-task

labor respond to unfavorable GDP shocks by investing more in machines and reducing more

routine-task labor than their industry peers. Moreover, these firms have significantly lower

market betas and future returns than their industry peers.

More generally, this research complements recent studies that explore how technological

shocks affect the cross-section of stock returns (see, for example, Garleanu, Panageas, and

Yu (2012), Eisfeldt and Papanikolaou (2013), and Kogan and Papanikolaou (2014)). In

particular, this paper suggests that firms’ decisions to adopt technology are related to the

business cycle. Accounting for this link between technology adoption and the business cycle

in the study of technological shocks and stock returns would be an interesting direction for

future work.
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Appendix

A. Proofs

A.1. Value Function of Automated Projects

From the dynamic specification of project’s cash flows and the SDF, we have:

At+s = Ae
−θs

t e
∫ s
0 σae

θ(u−s)dBu

Λt+s = Λte
(−r− 1

2
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∫ ∞
t′

Ae
−θs

t evsds− cN + e−(r+δ)t′f

r + δ
,

(A.2)

where t′ = max(t0 + T − t, 0) and vs = (−δ − r − 1
2
σ2

Λ)s +
∫ s

0
(σxe

θ(u−s) − σΛ)dBxu +∫ s
0
σze

θ(u−s)dBzu +
∫ s

0
σεe

θ(u−s)dBεu, which is a random variable that follows a normal dis-

tribution (see Shreve (2004) section 6.9). The mean and variance of vs are given as

E(vs) = (−δ − r − 1

2
σ2

Λ)s

V ar(vs) = σ2
Λs−

2σxσΛ

θ

(
1− e−θs

)
+
σ2
a

2θ

(
1− e−2θs

)
.

(A.3)

Exchanging the expectation operator and the integral operator in (A.2) using Fubini’s

Theorem, and using the log-normal property of evs , we have

VA(t0; t) =

∫ ∞
t′

Ae
−θs

t eE(vs)+
1
2
V ar(vs)ds− cN + e−(r+δ)t′f

r + δ

=

∫ ∞
t′

Ae
−θs

t eg(s)ds− cN + e−(r+δ)t′f

r + δ
,

(A.4)

where g(s) = (−δ − r)s− σxσΛ

θ

(
1− e−θs

)
+ σ2

a

4θ

(
1− e−2θs

)
.

Q.E.D.
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A.2. Function of Optimal Discounting

Given that the payoff of exercising the switching option is monotonically decreasing in

At (see equation (12)) and also that the process of At exhibits positive serially correlation,

we know that the optimal exercise of the switching option is when At falls below a certain

threshold A∗ (see Dixit and Pindyck (1994) section 4.1.D).

In order to calculate Êt[e−(r+δ)τ ], note that the stochastic discount factor uniquely corre-

sponds to a risk-neutral probability measure P̂, under which B̂xt = Bxt + σΛt is a standard

Brownian motions. P̂ satisfies

dP̂
dP

=
Λt

Λ0

ert

= exp

(
−σΛBxt −

1

2
σ2

Λt

)
,

(A.5)

where P is the physical probability measure. Given that Bzt and Bεt are idiosyncratic, they

have the same dynamics under P and P̂. Let ât = logAt + σΛσx
θ

, then the dynamics of ât
under P̂ are

dât = −θâtdt+ σadB̂t, (A.6)

where B̂t = σxB̂xt+σzBzt+σεBεt
σa

is still a standard Brownian motion under P̂. Therefore, τ

equals the time passed until ât reaches â∗ = logA∗ + σΛσx
θ

for the first time. Applying the

Laplace transform of τ under P̂ (Ricciardi and Sato (1988)), we have

Êt[e
−(r+δ)τ ]

= exp


[(

logAt + σΛσx
θ

)2 −
(
logA∗ + σΛσx

θ

)2
]
θ

2σ2
a

 D−(r+δ)/θ

[(
logAt + σΛσx

θ

)√
2θ
σ2
a

]
D−(r+δ)/θ

[(
logA∗ + σΛσx

θ

)√
2θ
σ2
a

]
= O(At, A

∗),

(A.7)

in which Dx(z) is a parabolic cylinder function given as

Dx(z) = 2x/2
√
π exp

(
−z

2

4

){
1

Γ
(

1−x
2

)H (−x
2
,
1

2
;
z2

2

)
−
√

2z

Γ
(
−x

2

)H (1− x
2

,
3

2
;
z2

2

)}
,

(A.8)
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where Γ(x) is the Euler gamma function and H(α, γ; z) is the Kummer function defined as

H(α, γ; z) =
∞∑
n=0

(α)n
(γ)n

zn

n!
(A.9)

with (η)n = η(η + 1) · · · (η + n− 1).

Q.E.D.

A.3. Comparison of Project Risks

I first prove that the beta of the assets in place of an unautomated project, βAPU , is larger

than that of a goods-producing automated project that has the same set of shocks to the

unautomated project, βA. It is easy to see that V AP
U = VA − cR

r+δ
. Hence, applying the

definition of beta in equation (19), we have βAPU > βA for any At.

I then prove that the beta of a newly initiated automated project minus investments in

machines, βnewA , is lower than a goods-producing automated project, βA, when At = A∗. Note

that

βnewA =
σx
σΛ

∫∞
T
A∗e

−θs
eg(s)−θsds∫∞

T
A∗e−θseg(s)ds− cN+e−(r+δ)T f

r+δ
− IM

(A.10)

and

βA =
σx
σΛ

∫∞
0
A∗e

−θs
eg(s)−θsds∫∞

0
A∗e−θseg(s)ds− cN+f

r+δ

. (A.11)

Therefore, the condition for βnewA < βA is

∫∞
T
A∗e

−θs
eg(s)−θsds∫∞

T
A∗e−θseg(s)ds− cN+e−(r+δ)T f

r+δ
− IM

<

∫∞
0
A∗e

−θs
eg(s)−θsds∫∞

0
A∗e−θseg(s)ds− cN+f

r+δ

. (A.12)

The parameters presented in Table 1 satisfy this condition.

Finally, I provide the equation that determines Ā(t0). Note that the beta for an unauto-

mated project, βU(t), and an automated project initiated at t0, βA(t0; t), can be expressed
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as

βU(t) =
σx
σΛ

∫∞
0
Ae
−θs
t eg(s)−θsds+ P (A∗)Ȯ(At, A

∗)At

VU(t)

βA(t0; t) =
σx
σΛ

∫∞
t′
Ae
−θs
t eg(s)−θsds

VA(t0; t)
,

(A.13)

where Ȯ(At, A
∗) = dO(At,A∗)

dAt
and t′ = max(t0 + T − t, 0). Therefore, Ā(t0) is deterined by the

following equation:∫∞
0
Ae
−θs
t eg(s)−θsds+ P (A∗)Ȯ(At, A

∗)At

VU(t)
=

∫∞
t′
Ae
−θs
t eg(s)−θsds

VA(t0; t)
. (A.14)

Q.E.D.

B. Simulation Procedure

The process for stochastic discount factor Λt, and the shocks, ext , ezt and eεt are discretized

using the following approximations:

Λt+∆t = Λte
(−r− 1

2
σ2

Λ)∆t−σΛ

√
∆tξxt

ext+∆t = (ext)e
−θ∆t

eσx
√

1−e−2θ∆t

2θ
ξxt

ezt+∆t = (ezt)e
−θ∆t

eσz
√

1−e−2θ∆t

2θ
ξzt

eεt+∆t = (eεt)e
−θ∆t

eσε
√

1−e−2θ∆t

2θ
ξεt ,

(B.1)

where ∆t = 1/12 is one month, and ξxt, ξzt and ξεt are standard normal random variables

that are independent with each other and over time.

I specify a grid of 10 points for each of the processes, and linearly interpolate the value

functions based on the grids. The grid points are chosen by first specifying an upper bound

and lower bound of the state variable and equally spanning the interval.

Profits in each period are thus

πA(t) = (At − cN − f)∆t

πU(t) = (At − cR − cN − f)∆t.
(B.2)

The value of VA and V SO
U can be easily calculated based on the analytical functional
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forms. I calculate A∗ by searching a large space of At.

The relation between project’s value, dividend, profit, and investment is

Vt = dt + E(
Λt+∆t

Λt

Vt+∆t), (B.3)

where dt = πt − It, and At is the state variable.

The value of growth options are calculated following Berk, Green, and Naik (1999), who

simulate 400 time periods in order to obtain a good approximation of the integration. I

discretize the present value of growth opportunities as

PV GOt =
λ∆t

J

J∑
j=1

∞∑
n=1

PV GOj,n, (B.4)

where PV GOj,n is the jth realization of the growth opportunity at time t+ s∆t. Note that

n = 0 is not included here (those opportunities that come up at t are already taken or

passed). The growth opportunity counts starting from t+ ∆t on.

C. Sample Construction

Monthly common stock data is from the Center for Research in Security Prices (CRSP

share code SHRCD =10 or 11). The sample includes stocks listed on NYSE, AMEX, and

NASDAQ. Accounting information is from Standard and Poor’s Compustat annual industrial

files. Following Fama and French (1993), in order to avoid the survival bias in the data, I

include firms in my sample after they have appeared in Compustat for two years. I follow the

literature and exclude firms with primary standard industrial classifications between 4900 and

4999 (regulated) and between 6000 and 6999 (financial). I exclude firm-year observations. In

every sample year, firm-level accounting variables and size measures are Winsorized at the

1% level (0.5% in each tail of the distribution) to reduce the influence of possible outliers. I

also exclude from the sample the lowest 20th size quantile (i.e., 5% of the sample of firms)

to avoid anomalies driven by micro-cap firms, as discussed in Fama and French (2008). I

aggregate OES establishments to Compustat firms using Employer Identification Number

and supplement the matching by using legal names.

I rank firms based on their share of routine-task labor relative to their industry peers

as follows. I first categorize firms into 17 industries using the Fama and French (1997)
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classification. Within each industry, I sort firms into five portfolios based on their share

of routine-task labor in each year. Thus, portfolio L includes firms that are in the bottom

quintiles in terms of share of routine-task labor from all industries. Similarly, I construct

portfolios 2, 3, 4, and H.

I construct the following variables for firms:

• RShare is firms’ share of routine-task labor created following equation (24).

• Mach/Capital is the ratio of machinery and equipment at cost to capital, which is

the sum of machinery and equipment at cost (Compustat item FATE) and structures

at cost, including building (FATB), construction in progress (FATC), and land and

improvements (FATP).

• Mach/RTL is the ratio of machinery and equipment at cost (FATE) to the total

number of routine-task labor in the firm, at $ millions per worker. A firm’s total

number of routine-task labor is calculated as the total number of routine-task labor of

its establishments identified in the microdata, projected to the firm level using total

number of employees from Compustat (EMP).

• CF is cash flow defined as earnings before extraordinary items (IB) plus depreciation

(DP) and is normalized by capital stock (PPENT) at the beginning of the year following

Malmendier and Tate (2005).

• Stock Ret is firms’ annual stock returns.

• Op.Lev is firms’ operating leverage defined as cost of goods sold (COGS) plus selling,

general, and administrative expenses (SGA); and is normalized by total assets (AT)

following Novy-Marx (2011).

• Mkt.Lev is firms’ financial leverage defined as the proportion of total debt to market

value of the firm defined following Fan, Titman, and Twite (2012). Total debt is the

book value of short-term (DLC) and long-term interest bearing debt (DLTT). Market

value of the firm is the market value of common equity plus book value of preferred

stock (PSTK) plus total debt. Market value of common equity is defined as in Fama

and French (1992).

• Size and B/M are the natural logarithms of firms’ market value and firms’ book-to-

market, respectively, defined following Fama and French (1992).

• IM is firms’ investment in machines, calculated as the ratio of the current year’s ma-

chinery and equipment at cost (FATE) to the previous year’s machinery and equipment
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at cost minus one.

• IS is firms’ investment in structures, calculated as the ratio of current year’s struc-

tures at cost to the previous year’s structures at cost minus one. Firms’ structures at

cost is the sum of building (FATB), construction in progress (FATC), and land and

improvements (FATP) at cost.

• Shock: Real growth rate of GDP value added.

• Tobin’s Q is firms’ Tobin’s Q defined as the ratio of firms’ market value, the sum of

total liability (LT) and market equity, to total assets (AT). Market equity is defined as

in Fama and French (1992).

• Cash Holding is firms’ cash holding defined as cash and short-term investments (CHE),

normalized by total assets (AT).

• Asset is firms’ total assets (AT).
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Figure 1. Monthly employment of high-routine occupations and low-routine occupations. This figure
illustrates the monthly employment of routine-task labor and non-routine-task labor using the Current Population
Survey (CPS) monthly basic data. The left axis corresponds the employment of routine-task labor, and the right axis
corresponds the employment of non-routine-task labor. I crosswalk the occupation classifications of different years
to a unified occupation classification occ1990, which is available at the Integrated Public Use Microdata Series at
the University of Minnesota. Following Autor and Dorn (2013), I obtain the task skill data from the Dictionary of
Occupation Titles, fourth edition and revised fourth edition, and calculate the routine-task intensity (RTI) score for
each occ1990 occupation as in equation (23). I classify an occupation as High-Routine Occupation or Low-Routine
Occupation if its RTI score is in the bottom or top 30% of the RTI distribution in the 1980 Census. The monthly
employment is aggregated from the number of individuals in the occupations, weighted by CPS sampling weights, and
seasonally adjusted using the Census X12 ARIMA. The shaded areas indicate the NBER recession months.
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Panel A. Quality-Adjusted Price of Equipment and Software
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Panel B. Hourly Wage of High-Routine Occupations and Low-Routine Occupations
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Figure 2. Time-series of machine price and wages. Panel A presents the quality-adjusted price of equipment and
software provided by Ryan Isaelsen. The price index is aggregated from the price of 22 groups of durable equipment
and software presented by the Bureau of Economic Analysis. These data are first constructed by Gordon (1990) and
later extended by Israelsen (2010). Panel B presents the hourly wage of occupations by routine-task intensity score.
The nominal hourly wage for each occupation is the average hourly wage of individuals in that occupation, weighted
by the sample personal earnings weights, from the sample of the Current Population Survey Outgoing Rotation Group
maintained by the National Bureau of Economic Research. See Figure 1 for definitions of high-routine occupations and
low-routine occupations. The shaded areas indicate recession years.
.
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Panel A. Actual and Counterfactual Employment of High-Routine Occupations
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Panel B. Actual and Counterfactual Employment of Low-Routine Occupations
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Figure 3. Actual and counterfactual employment of high-routine occupations and low-routine occupa-
tions around the Job Creation and Worker Assistance Act of 2002. The Job Creation and Worker Assistance
Act of 2002 (JCWA Act) was introduced on October 11, 2011. Its first passage vote took place on October 24, 2011, and
it was signed by President George W. Bush on March 9, 2002. The JCWA Act offers a 30% tax bonus on new qualified
property, mostly machinery and equipment, that is acquired by companies after September 10, 2011 and placed in
service before September 11, 2004. The actual employment is from October 2000 to October 2002. Following Jaimovich
and Siu (2014), I construct counterfactual data by pairing July 1990 and March 2001 which are the starting months
of the recessions of 1990 and 2001 according to the National Bureau of Economic Research, respectively. I rescale the
counterfactual series to match the magnitude of the fall in actual employment from the starting month of the 2001
recession to the month in which the JCWA Act was introduced. The monthly employment series of high-routine occu-
pations and low-routine occupations are described in Figure 1. These series are further logged and band-pass filtered
to remove fluctuations at frequencies higher than 12 months. The shaded area indicates the NBER recession months.
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Table 1
Parameter Values and Target Moments

Panel A presents the parameter values used in the model simulation. Panel B presents the moments used
to pinpoint some of the parameter values. A firm’s share of routine-task labor is the ratio of the total wage
expense on its routine-task labor relative to its total wage expense, as defined in equation (6). Aggregate share
of routine-task labor is calculated based on the firm sample from 1990 to 2014 (see Section II for details).
Aggregate gross investment is the total real investment in fixed assets normalized by the previous year’s real
fixed assets, using data from the Standard Fixed Assets Tables provided by the Bureau of Economic Analysis.
GDP growth is the real growth rate of GDP value added. Aggregate gross hiring is the ratio of the total real
earnings of the new hires of stable jobs in the current quarter to the total real earnings of the stable jobs
in the last quarter, and annualized by multiplying by 4, using data from the Quarterly Workforce Indicators
provided by the Census Bureau.

Panel A: Parameter Values

Parameters Symbol Value Source

Technology
Volatility of aggregate shock σx 0.13 Kogan and Papanikolaou (2014)
Volatility of firm-specific shock σz 0.20 Kogan and Papanikolaou (2014)
Volatility of project-specific shock σε 1.50 Kogan and Papanikolaou (2014)
Rate of mean reversion θ 0.35 Kogan and Papanikolaou (2014)

Project
Operating cost except for wage expense f 2.05 Matching moments
Total wages for non-routine-task labor cN 0.25 Matching moments
Total wages for routine-task labor cR 0.45 Matching moments
Investment for project initiation I 3.90 Matching moments
Investment in machines per automated project IM 0.50 Matching moments
Required time for technology adoption T 0.75 Kydland and Prescott (1982)
Project obsolescence rate δ 0.10 Kogan and Papanikolaou (2014)
Project arrival rate λ 12 Matching moments

Stochastic discount factor
Risk-free rate r 0.025 Kogan and Papanikolaou (2014)
Price of risk of aggregate shock σΛ 1.30 Matching moments

Panel B: Moments

Moments Data Model

Aggregate economic moments
Mean of aggregate dividend growth 0.02 0.02
Aggregate share of routine-task labor 0.14 0.14
Correlation between gross investment and GDP Growth 0.64 0.54
Correlation between gross hiring and GDP Growth 0.74 0.69

Asset pricing moments
Mean of equal-weighted aggregate risk premium 0.13 0.13
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Table 2
Five Portfolios Sorted on RShare using Model Simulated Data

This table shows the asset pricing tests for five portfolios sorted on share of routine-task labor (RShare) using
model simulated data. A firm’s RShare is the ratio of the total wage expense on its routine-task labor relative
to its total wage expense, as defined in equation (6), and is lagged by one year. Excess returns are annualized
by multiplying by 12 and reported in percentages. MKT β is the coefficient of regressing the excess returns
of the portfolio on the excess returns of the market portfolio. Standard errors are reported in parentheses. ∗,
∗∗, and ∗∗∗ represent significance level of 10%, 5%, and 1%, respectively.

L 2 3 4 H H−L

E[R]− rf (%) 14.20∗∗∗ 13.60∗∗∗ 12.94∗∗∗ 12.27∗∗∗ 11.96∗∗∗ −2.24∗∗∗
(1.62) (1.59) (1.45) (1.39) (1.32) (0.29)

MKT β 1.13∗∗∗ 1.08∗∗∗ 1.02∗∗∗ 0.96∗∗∗ 0.95∗∗∗ −0.18∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RShare 0.06 0.11 0.14 0.18 0.22 0.17
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Table 3
Routine-Task Labor

Panel A presents the time-series average of the share of routine-task labor for aggregate occupational groups
using establishment-occupation level data provided by Occupational Employment Statistics program of the
Bureau of Labor Statistics. Routine-task labor (RTL) is defined as workers in occupations with routine-
task intensity scores in top quintile of the distribution in that year. See Section II for the definition of
routine-task intensity score. Emp in 2014 is the total employment in millions as of the year 2014. The
aggregate occupational group is defined as the major group, following the OES Taxonomy classification for
the sample of 1990-1998. For the 1999-2014 sample, which uses the Standard Occupational Classification
(SOC) classification for occupations, I aggregate the major SOC classification to seven aggregate groups
following the suggestions of the SOC Revision Policy Committee. Management represents managerial and
administration occupations (SOC 11-13). Professional represents professional, paraprofessional, and technical
occupations (SOC 15-31). Sales represents sales-related occupations (SOC 41). Clerk presents clerical, office
and administrative support occupations (SOC 43). Service represents service and related occupations (SOC
33-39). Agriculture represents farming, fishing, and forestry occupations (SOC 45). Production represents
production, maintenance, construction, and transportation occupations (SOC 47-53). Panel B presents the
time-series average of the correlation between different characteristics of occupations. Routine-task labor is
a dummy variable that equals one if the occupation is routine-task labor during that year. RTI Score is
the routine-task intensity score of the occupation. Offshorability, created by Acemoglu and Autor (2011), is
the propensity of the occupation to be outsourced to foreign countries. Wage is the median hourly wage of
the occupation. Skill is the Specific Vocational Preparation measure from the Dictionary of Occupational
Titles, which measures the occupation’s required level of specific preparation. Unionization is the percentage
of workers in the occupation covered by unions from www.unionstats.com. Panel B is prepared using OES
data from 1999-2014 under SOC classification.

Panel A: Routine-Task Labor in Occupation Groups

Management Professional Sales Clerk Service Agriculture Production Total

RTL (%) 0.2% 5.6% 22.2% 32.0% 36.1% 8.3% 20.4% 20.0%
Emp in 2014 4.96 11.42 7.84 4.39 7.47 0.16 9.23 45.46

Panel B: Average Correlation Matrix

Routine-Task Labor RTI Score Offshorability Wage Skill Unionization

Routine-Task Labor 1
RTI Score 0.65 1
Offshorability −0.02 −0.06 1
Wage −0.28 −0.35 0.12 1
Skill −0.27 −0.44 0.05 0.64 1
Unionization −0.05 −0.07 −0.25 0.00 −0.06 1
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Table 4
Summary Statistics of Firms

This table presents the summary statistics. Panel A reports the mean and standard deviation of share of
routine-task labor (RShare) for all matched Compustat firms by industrial sectors from 1990 to 2014. RShare
is the ratio of a firm’s total wage expense on its routine-task labor to its total wage expense, as defined in
equation (24). Sector is at the SIC division level. Panel B reports the characteristics of firms sorted into five
portfolios based on their RShare within industry. Each year, firms in each of the Fama-French 17 industries
are sorted into five portfolios based on their RShare. Mach/Capital is the ratio of machinery and equipment
at cost to capital at cost (i.e., machinery and equipment at cost plus structures at cost). Mach/RTL is the
ratio of machinery and equipment at cost to total number of routine-task labor in the firm in million dollars
per employee. Op.Lev and CF represent firms’ operating leverage and cash flow, respectively. Size, B/M ,
and Mkt.Lev represent the market capitalization, book-to-market, and financial leverage, respectively. All
variables are winsorized at the 1% level (0.5% in each tail of the distribution). See the Appendix for definitions
of firm-level variables. Panel C shows the year-over-year transition probability matrix of a firm moving from
one RShare quintile to another. RShare quintiles are sorted within Fama-French 17 industries.

Panel A: RShare in Compustat Firms

Sector Agricult Mining Construct Manuf Transp Wholesale Retail Finance Service Admin Total

Mean 0.13 0.12 0.07 0.17 0.10 0.15 0.24 0.14 0.11 0.13 0.15
Std 0.14 0.15 0.11 0.16 0.11 0.14 0.19 0.16 0.15 0.16 0.16
N 224 3,379 969 40,581 10,258 3,589 7,733 11,763 17,189 738 96,423

Panel B: Firm Characteristics in Portfolios Sorted by RShare within Industry

Quintiles RShare Mach/Capital Mach/RTL Op.Lev CF Size B/M Mkt.Lev

1 0.02 0.78 3.73 1.06 −0.25 12.77 0.63 0.17
2 0.06 0.74 1.27 1.07 0.13 13.08 0.64 0.20
3 0.12 0.72 0.61 1.13 0.28 13.11 0.67 0.22
4 0.20 0.71 0.35 1.20 0.32 13.10 0.69 0.23
5 0.39 0.70 0.17 1.27 0.40 12.78 0.72 0.23

Panel C: Transition Probabilities across Portfolios Sorted by RShare within Industry

Next Year

Current Year L 2 3 4 H

1 0.70 0.19 0.05 0.03 0.03
2 0.14 0.62 0.18 0.04 0.02
3 0.04 0.14 0.60 0.18 0.04
4 0.02 0.03 0.15 0.63 0.16
5 0.02 0.02 0.04 0.15 0.76
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Table 5
Response of Firm Investment to Aggregate Shocks

This table shows the response of investment in machinery capital (main test) and other capital (placebo test)
to aggregate shocks for firms with different shares of routine-task labor, RShare. The sample period is 1990-
2014 for all columns except for Columns (3) and (4), which exclude 2002-2004 to rule out the impact of the
Job Creation and Worker Assistant (JCWA) Act of 2002 which provides a tax bonus on corporate investment
in equipment (see Section B.4 for more details). The dependent variables are Investment in Machines, which
is the real growth rate of machinery and equipment at cost (Compustat item FATE), and Investment in Other
Capital, which is the real growth rate of property, plant, and equipment at cost except for machinery and
equipment at cost (PPEGT - FATE). Shock is the growth rate of real GDP value added. See the Appendix
for definitions of firm-level variables. All standard errors are clustered at the firm level and reported in
parentheses. ∗, ∗∗, and ∗∗∗ represent significance level of 10%, 5%, and 1%, respectively.

Dep. Var. Investment in Machines Investment in Other Capital

(1) (2) (3) (4) (5) (6)

RSharet−1 0.041∗∗ 0.037∗ 0.043∗∗ 0.038∗ 0.029 0.013
(0.021) (0.020) (0.022) (0.021) (0.048) (0.047)

RSharet−1× Shockt −1.299∗∗ −1.166∗∗ −1.510∗∗ −1.507∗∗ −1.909 −1.333
(0.643) (0.547) (0.684) (0.648) (1.385) (1.362)

Log Tobin’s Qt−1 0.127∗∗∗ 0.128∗∗∗ 0.203∗∗∗

(0.007) (0.008) (0.017)

Mkt.Levt−1 −0.222∗∗∗ −0.222∗∗∗ −0.266∗∗∗
(0.018) (0.019) (0.041)

Cash Flowt−1 0.000 0.000 0.004
(0.001) (0.001) (0.003)

Cash Holdingt−1 0.305∗∗∗ 0.337∗∗∗ 0.741∗∗∗

(0.028) (0.031) (0.073)

Log Assett−1 −0.022∗∗∗ −0.027∗∗∗ −0.067∗∗∗
(0.005) (0.006) (0.013)

Firm FE Y Y Y Y Y Y
Ind×Year FE Y Y Y Y Y Y
Observations 38,616 38,616 33,248 33,248 37,808 37,808
Adjusted R2 0.355 0.406 0.384 0.436 0.312 0.340

59



Table 6
Response of Establishment Routine-Task Employment to Aggregate Shocks

Panel A shows the response of routine-task employment changes to aggregate shocks at the establishment
level. Chg. EmpRt−3,t is the establishment’s 3-year change in employment of routine-task labor normalized
by the total number of employees three years earlier. Chg. RShareEst,Empt−3,t and Chg. RShareEstt−3,t are the
3-year changes in the establishment’s employment-based share of routine-task labor and share of routine-
task labor, respectively. An establishment’s (employment-based) share of routine-task labor is the ratio of its
(employment of routine-task labor) wage expense on its routine-task labor to its (total employment) total wage
expense. In all variable constructions, routine-task labor is defined at t− 3 and maintains the same definition
for three years to form the time-series changes of the variables. RSharet−3 is the establishment’s parent firm’s
RShare three years before in Columns (1), (3), and (5); and the establishment’s RShare three years before
in Columns (2), (4), and (6). Shockt−3,t is the growth rate of real GDP value added from t − 3 to t. Ind is
the Fama-French 17 industry classification. State is the state in which the establishment is located. Panel
B reports the response of routine-task employment to aggregate shocks in newly opened establishments. An
establishment is identified as newly opened in year t if it does not exist in the Quarterly Census of Employment
and Wages database in year t− 1 but exists in year t. RShareEst,Empt and RShareEstt are the establishment’s
employment-based share of routine-task labor and share of routine-task labor, respectively. RSharet−1 is the
parent firm’s RShare in year t − 1. Shockt is the growth rate of real GDP value added in year t. Standard
errors, reported in parentheses, are clustered at the firm level in all cases except for Columns (2), (4), and (6)
in Panel A, which are clustered at the establishment level. ∗, ∗∗, and ∗∗∗ represent significance level of 10%,
5%, and 1%, respectively. The sample period is 1996-2014 for Panel A, and 1990-2014 for Panel B.

Panel A: Existing Establishments

Dep. Var. Chg. EmpRt−3,t Chg. RShareEst,Empt−3,t Chg. RShareEstt−3,t

Level of RSharet−3: Firm Est. Firm Est. Firm Est.

(1) (2) (3) (4) (5) (6)

RSharet−3 −0.941∗∗∗ −0.851∗∗∗ −0.802∗∗∗ −0.840∗∗∗ −0.716∗∗∗ −0.761∗∗∗
(0.082) (0.015) (0.065) (0.009) (0.061) (0.009)

RSharet−3 1.453∗ 0.421∗∗ 0.919∗∗ 0.548∗∗∗ 0.758∗∗ 0.335∗∗∗

× Shockt−3,t (0.764) (0.189) (0.446) (0.111) (0.385) (0.102)

Firm FE Y Y Y Y Y Y
Ind×Year FE Y Y Y Y Y Y
State×Year FE Y Y Y Y Y Y
Observations 79,344 79,344 79,344 79,344 79,344 79,344
Adjusted R2 0.157 0.254 0.137 0.380 0.142 0.396

Panel B: Newly Opened Establishments

Dep. Var. RShareEst,Empt RShareEstt

RSharet−1 0.619∗∗∗ 0.572∗∗∗

(0.121) (0.114)

RSharet−1× Shockt 0.046∗∗ 0.039∗∗

(0.020) (0.020)

Firm FE Y Y
Ind×Year FE Y Y
State×Year FE Y Y
Observations 7,478 7,478
Adjusted R2 0.660 0.659
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Table 7
Five Portfolios Sorted on RShare Within Industry

This table reports time-series average of stock returns for five portfolios sorted on share of routine-task labor
(RShare) within industry. At the end of each June, firms in each Fama-French 17 industry are sorted into
five equally weighted portfolios based on their RShare. Excess Returns are monthly returns minus the 1-
month Treasury bill rate. Excess Unlevered Returns are monthly unlevered returns, defined as in equation
(28), minus the 1-month Treasury bill rate. DGTW-Adjusted Returns are monthly returns adjusted following
Daniel, Grinblatt, Titman, and Wermers (1997). RShare is lagged by 18 months. Newey-West standard errors
(Newey and West (1987)) are estimated with four lags and reported in parentheses. All returns are annualized
by multiplying by 12 and are reported in percentages. ∗, ∗∗, and ∗∗∗ represent significance level of 10%, 5%,
and 1%, respectively. The sample covers stock returns from July 1991 to June 2014.

L 2 3 4 H H−L

Panel A: Excess Returns

E[R]− rf (%) 14.11∗∗∗ 13.17∗∗∗ 12.40∗∗∗ 12.32∗∗∗ 11.02∗∗ −3.10∗
(4.99) (4.51) (4.51) (4.41) (4.32) (1.70)

σ(%) 76.77 68.57 67.54 65.48 64.13 27.62

Panel B: Excess Unlevered Returns

E[RUnlev]− rf (%) 11.64∗∗∗ 10.07∗∗∗ 9.38∗∗∗ 9.04∗∗∗ 8.32∗∗ −3.32∗∗
(4.20) (3.65) (3.50) (3.30) (3.28) (1.55)

σ(%) 64.56 55.87 52.67 49.96 49.12 24.91

Panel C: DGTW-Adjusted Returns

E[RDGTW ] (%) 3.11∗ 2.83∗∗ 1.82 1.41 −0.24 −3.35∗∗
(1.63) (1.32) (1.33) (1.42) (1.25) (1.44)

σ(%) 24.72 18.69 19.41 20.71 20.06 22.88
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Table 8
CAPM Regressions

This table reports the unconditional CAPM time-series regression results in Panel A and Conditional CAPM
regression results in Panel B for five portfolios sorted on share of routine-task labor (RShare) within industry.
At the end of each June, firms in each Fama-French 17 industry are sorted into five equally weighted portfolios
based on their RShare. RShare is lagged by 18 months. Newey-West standard errors are estimated with four
lags for the unconditional CAPM monthly estimations and with one lag for the conditional CAPM yearly
estimation, reported in parentheses. CAPM alphas are annualized by multiplying by 12 and are reported in
percentages. ∗, ∗∗, and ∗∗∗ represent significance level of 10%, 5%, and 1%, respectively. The sample covers
stock returns from July 1991 to June 2014.

L 2 3 4 H H−L

Panel A: Unconditional CAPM

MKT β 1.26∗∗∗ 1.15∗∗∗ 1.13∗∗∗ 1.09∗∗∗ 1.03∗∗∗ −0.23∗∗∗
(0.05) (0.04) (0.06) (0.06) (0.07) (0.05)

α (%) 4.08 4.06 3.40 3.67 2.79 −1.29
(2.64) (2.49) (2.40) (2.46) (2.48) (1.70)

R2 0.72 0.74 0.75 0.74 0.69 0.18

Panel B: Conditional CAPM

Avg. MKT β 1.60∗∗∗ 1.45∗∗∗ 1.36∗∗∗ 1.35∗∗∗ 1.31∗∗∗ −0.29∗∗∗
(0.11) (0.10) (0.08) (0.10) (0.08) (0.06)

Avg. α (%) 3.40 2.78 3.48 2.92 1.64 −1.76
(4.68) (4.20) (3.66) (3.42) (3.48) (2.07)

Avg. R2 0.77 0.79 0.80 0.80 0.77 0.31
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Table 9
Panel Regressions of Conditional Betas and Annual Stock Returns on RShare

This table reports the predictability of firms’ share of routine-task labor (RShare) on their conditional betas
and annual stock returns, while controlling for known firm characteristics that predict risk. Conditional
betas are calculated following Lewellen and Nagel (2006) for each year t. Realized annual stock returns are
aggregated from July of year t to June of year t + 1 in percentages. RShare is lagged by 18 months. Ind
indicates the Fama-French 17 industries. See the Appendix for definitions of firm characteristics. Standard
errors are clustered at the firm level and reported in parentheses. ∗, ∗∗, and ∗∗∗ represent significance level of
10%, 5%, and 1%, respectively. The sample covers stock returns from July 1991 to June 2014.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Conditional Betas

RSharet−1 -0.48∗∗∗ -0.45∗∗∗ -0.48∗∗∗ -0.48∗∗∗ -0.52∗∗∗ -0.52∗∗∗ -0.50∗∗∗ -0.47∗∗∗ -0.52∗∗∗

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
Cash Flowt−1 -0.04∗∗∗ -0.04∗∗∗ -0.03∗∗∗

(0.01) (0.01) (0.01)
Stock Rett−1 0.16∗∗∗ 0.20∗∗∗ 0.23∗∗∗

(0.03) (0.03) (0.03)
Op.Levt−1 -0.01 -0.07∗∗∗ -0.09∗∗∗

(0.02) (0.02) (0.02)
Mkt.Levt−1 0.36∗∗∗ 0.32∗∗∗ 0.13

(0.07) (0.08) (0.08)
Sizet−1 -0.09∗∗∗ -0.09∗∗∗ -0.10∗∗∗

(0.01) (0.01) (0.01)
B/Mt−1 0.11∗∗∗ -0.04 -0.03

(0.03) (0.03) (0.03)

Fixed Effects Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Yr
Observations 41,080 41,080 41,080 41,080 41,080 41,080 41,080 41,080 41,080
Adjusted R2 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.05

Panel B: Annual Stock Returns

RSharet−1 -5.66∗∗ -5.33∗∗ -5.83∗∗ -6.81∗∗∗ -7.09∗∗∗ -6.66∗∗∗ -7.70∗∗∗ -8.69∗∗∗ -12.11∗∗∗

(2.28) (2.28) (2.33) (2.30) (2.33) (2.33) (2.35) (2.43) (2.30)
Cash Flowt−1 -0.37∗∗ -0.21 -0.24

(0.16) (0.16) (0.16)
Stock Rett−1 -4.85∗∗∗ -3.23∗∗∗ -3.22∗∗∗

(0.72) (0.71) (0.69)
Op.Levt−1 2.71∗∗∗ 1.84∗∗∗ 0.76∗

(0.47) (0.50) (0.46)
Mkt.Levt−1 16.14∗∗∗ 2.76 1.24

(1.91) (2.20) (2.23)
Sizet−1 -2.55∗∗∗ -1.18∗∗∗ -1.24∗∗∗

(0.21) (0.21) (0.21)
B/Mt−1 11.56∗∗∗ 9.12∗∗∗ 9.36∗∗∗

(0.96) (1.13) (1.13)

Fixed Effects Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Ind×Yr Yr
Observations 41,080 41,080 41,080 41,080 41,080 41,080 41,080 41,080 41,080
Adjusted R2 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.07
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Table 10
Robustness of Standard Errors for Panel Regressions

The table reports two alternative regression analyses with different assumptions for the correlation structure
of the residuals from that in Table 9. Columns (1)-(4) report panel regression results with standard errors
clustered by both firm and year. Conditional betas are calculated following Lewellen and Nagel (2006) for each
year t. Realized annual stock returns are aggregated from July of year t to June of year t+ 1 in percentages.
RShare is firms’ share of routine-task labor lagged by 18 months. Columns (5) and (6) report Fama-MacBeth
cross-sectional regression results using monthly stock returns, annualized by multiplying by 12, and with
Newey-West standard errors estimated with four lags. All standard errors are reported in parentheses. Ind
indicates the Fama-French 17 industries. See the Appendix for definitions of firm characteristics. ∗, ∗∗, and
∗∗∗ represent significance level of 10%, 5%, and 1%, respectively. The sample covers stock returns from July
1991 to June 2014.

Panel Regressions with Double-Clustered S.E. Fama-MacBeth

Dep. Var. Conditional Beta Annual Stock Returns Monthly Stock Returns

(1) (2) (3) (4) (5) (6)

RSharet−1 −0.47∗∗∗ −0.52∗∗∗ −8.69∗ −12.11∗∗ −4.83∗ −7.64∗∗∗
(0.09) (0.09) (4.68) (4.77) (2.76) (2.78)

Cash Flowt−1 −0.04∗∗∗ −0.03∗∗∗ −0.21 −0.24 0.15 0.10
(0.01) (0.01) (0.31) (0.32) (0.32) (0.32)

Stock Rett−1 0.20 0.23 −3.23 −3.22 −1.90 −2.06
(0.15) (0.16) (2.78) (3.30) (1.88) (1.96)

Op.Levt−1 −0.07∗ −0.09∗∗ 1.84∗ 0.76 0.89 0.11
(0.04) (0.04) (1.03) (1.41) (0.57) (0.81)

Mkt.Levt−1 0.32∗ 0.13 2.76 1.24 −3.99 −5.05
(0.17) (0.19) (6.46) (7.81) (4.78) (5.05)

Sizet−1 −0.09∗∗∗ −0.10∗∗∗ −1.18 −1.24 −0.50 −0.57
(0.03) (0.03) (0.76) (0.81) (0.57) (0.60)

B/Mt−1 −0.04 −0.03 9.12∗∗∗ 9.36∗∗∗ 2.68∗∗∗ 2.31∗∗

(0.07) (0.07) (2.49) (2.58) (0.94) (1.05)

Fixed Effects Ind×Yr Yr Ind×Yr Yr Ind -
Observations 41,080 41,080 41,080 41,080 482,149 482,149
Adj. R2/Avg. R2 0.08 0.05 0.11 0.07 0.06 0.03
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Table 11
Panel Regressions of Annual Stock Returns on RShare in Subsamples

This table shows the predictability of firms’ RShare on annual stock returns in subsamples. Panel A reports
the results in the subsamples based on whether the ratio of the firm’s total number of employees identified in
the OES microdata sample to the firm’s number of employees in the Compustat data is above or below the
median for that year. Panel B reports the results in the subsamples based on whether the firms mentioned
two or fewer states in their 10-K annual report following Garcia and Norli (2012) and Tuzel and Zhang (2015).
Panel C reports the results in the subsamples based on whether the firm’s market capitalization is below or
above the median for that year. See the Appendix for definitions of variables. Standard errors are clustered
at the firm level and reported in parentheses. ∗, ∗∗, and ∗∗∗ represent significance level of 10%, 5%, and 1%,
respectively. The sample covers stock returns from July 1991 to June 2014 in Panel A and Panel C and from
July 1994 to June 2010 in Panel B.

(1) (2) (3) (4)

Panel A: Subsample by Employment Identification Ratio

Below Median Above Median

RSharet−1 −8.11∗∗∗ −9.24∗∗∗ −9.24∗∗ −16.23∗∗∗
(3.08) (2.96) (3.84) (3.57)

Firm Control Yes Yes Yes Yes
Fixed Effects Ind×Yr Yr Ind×Yr Yr
Observations 20,402 20,402 20,395 20,395
Adjusted R2 0.12 0.09 0.11 0.07

Panel B: Subsample by Geographic Dispersion

Two or Fewer States in 10-K More than Two States in 10-K

RSharet−1 −19.46∗∗ −22.68∗∗∗ −9.52∗∗∗ −12.54∗∗∗
(7.99) (7.33) (3.13) (2.99)

Firm Control Yes Yes Yes Yes
Fixed Effects Ind×Yr Yr Ind×Yr Yr
Observations 3,806 3,806 21,934 21,934
Adjusted R2 0.08 0.08 0.12 0.07

Panel C: Subsample by Firm Size

Below Median Above Median

RSharet−1 −12.77∗∗∗ −16.50∗∗∗ −3.33 −5.62∗∗
(3.75) (3.59) (2.28) (2.18)

Firm Control Yes Yes Yes Yes
Fixed Effects Ind×Yr Yr Ind×Yr Yr
Observations 20,547 20,547 20,533 20,533
Adjusted R2 0.10 0.07 0.19 0.11
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Table 12
Time-Series of Firms’ Characteristics and Risk around Recessions

Panel A presents the production characteristics of firms in the top (H) and bottom (L) quintile portfolios
sorted by share of routine-task labor (RShare) within industry, as well as the unpaired difference in means test
results between the two portfolios (H − L). Panel B presents the market betas of the two quintile portfolios
and the long-short portfolio. In the year 2000 and 2007, firms in each Fama-French 17 industry are sorted into
five equally weighted portfolios based on their RShare in the previous year. The portfolio formation maintains
the same for four years. Mach/Emp is the ratio of machinery at cost (Compustat item FATE) to number of
employees (EMP) in million dollars per employee. Op.Lev is the operating leverage defined following Novy-
Marx (2011). Firms are required to have Mach/Emp and Op.Lev available for all four years around the
recessions and also have stock returns available for 48 months around the recessions (i.e., July 2000 to June
2004 and July 2007 to June 2011). MKT β is the regression coefficient of regressing the portfolios’ excess
returns on the market excess returns from July of the current year to June of the following year, respectively.
Standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ represent significance level of 10%, 5%, and 1%,
respectively. See the Appendix for definitions of the production characteristics.

Portfolios Formed in Year Prior to Recession

t− 1 Recession t+ 1 t+ 2

Panel A: Firm Production Characteristics

Mach/Emp
H 0.067∗∗∗ 0.071∗∗∗ 0.077∗∗∗ 0.079∗∗∗

(0.004) (0.004) (0.005) (0.005)
L 0.080∗∗∗ 0.083∗∗∗ 0.089∗∗∗ 0.090∗∗∗

(0.008) (0.009) (0.009) (0.009)
H−L −0.014∗ −0.012 −0.011 −0.011

(0.008) (0.008) (0.009) (0.009)

Op.Lev
H 1.257∗∗∗ 1.295∗∗∗ 1.233∗∗∗ 1.206∗∗∗

(0.042) (0.044) (0.043) (0.043)
L 1.117∗∗∗ 1.171∗∗∗ 1.105∗∗∗ 1.079∗∗∗

(0.057) (0.056) (0.055) (0.054)
H−L 0.141∗∗ 0.124 0.128∗ 0.127

(0.071) (0.075) (0.074) (0.077)

Panel B: Portfolio Risk Measure

MKT β
H 0.709∗∗∗ 1.416∗∗∗ 1.156∗∗∗ 1.233∗∗∗

(0.110) (0.125) (0.105) (0.115)
L 0.992∗∗∗ 1.492∗∗∗ 1.354∗∗∗ 1.290∗∗∗

(0.158) (0.093) (0.115) (0.148)
H−L −0.283∗∗ −0.075 −0.198∗∗ −0.057

(0.115) (0.097) (0.085) (0.112)
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