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Hedging Interest Rate Risk Using a Structural Model of Credit Risk

Abstract

Recent evidence has shown that structural models fail to capture interest rate sensitivities of

corporate debt. We consider a structural model that incorporates a three-factor dynamic term

structure model (DTSM) into the Merton (1974) model. We show that the proposed model largely

captures the interest rate exposure of corporate bonds. We also find that for investment-grade

bonds, hedging effectiveness substantially improves under the proposed model. Our results indi-

cate that to better capture and hedge the interest rate exposure of corporate bonds, we need to

incorporate a more realistic DTSM in the existing structural models.

Keywords: structural models, interest rate risk, hedge ratios

JEL Classifications: G13, G12, G33, G24



1 Introduction

One important and widely used theoretical framework for understanding the credit risk premium

is the structural approach of Black and Scholes (1973) and Merton (1974). In addition to the

large theoretical literature on various extensions of the original Merton model, there has been a

fast growing literature on the empirical performance of structural credit risk models. For instance,

recent studies have empirically examined the implications of structural models for corporate bond

spreads (Eom, Helwege, and Huang 2004; Ericsson and Reneby 2005; Huang and Huang 2012),

spread changes (Collin-Dufresne, Goldstein, and Martin 2001), equity volatility (Huang and Zhou

2008), and corporate bond volatility (Bao and Pan 2013) etc.

In an influential study, Schaefer and Strebulaev (2008) find that while the Merton model sub-

stantially underestimates corporate bond yield spreads, the model-implied equity sensitivity of

corporate bond returns (hedge ratios) is actually quite consistent with those observed from market

data. However, they also document that the Merton model with stochastic interest rates fails to

capture the interest rate sensitivity of corporate bond returns and note that this failure “remains an

interesting puzzle” (page 3). For convenience we refer to this puzzle as the “interest rate sensitivity

puzzle.”

In this paper we study hedge ratios implied by structural models with stochastic interest rates.

Specifically, we consider the class of so-called Merton-Vasicek (MV) models—namely, the origi-

nal Merton (1974) model combined with the class of Gaussian dynamic term structure models

(GDTSMs). In particular, we implement the four-factor MV model, which incorporates a three-

factor GDTSM (into the Merton model). This is motivated by three consideration: First, given that

Treasury returns are an important determinant of corporate bond returns (especially for investment-

grade bonds), a structural model doing a better job in capturing the behavior of Treasury yields

may predict hedge ratios of corporate bonds more accurately. Second, it is known that three fac-

tors explain all but a negligible fraction of the variation in the (default-free) term structure. Third,

hardly any studies have examined structural models with a multi-factor DTSM. For instance, the

term structural model implemented in Schaefer and Strebulaev (2008) is a one-factor Vasicek (1977)
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model. We estimate the four-factor MV model using data for a sample of US corporate bonds from

the TRACE over the period July 2002–December 2012.

Our main findings are as follows: First, we find that indeed the four-factor MV model largely

captures the interest rate sensitivity of corporate debt and thus helps mitigate the “interest rate

sensitivity puzzle.” This result holds for hedge ratios on both corporate bond returns and yield

spread changes. Second, we also examine the hedging performance of Treasury bonds when either

corporate bond returns or spread changes are to be hedged, and find that hedging effectiveness

substantially improves under the four-factor model, at least for investment-grade bonds in our

sample. Third, in addition to the interest rate sensitivity of corporate bonds, we also examine their

sensitivity to the underlying equity. We find that the four-factor model also provides quite accurate

predictions of the equity sensitivities of both corporate bond returns and yield spread changes.

These findings also have implications for structural modeling of credit risk. Although there is

an enormous literature on structural models, very few such models go beyond one-factor DTSMs.

Perhaps, this is because so far there is no clear evidence that including stochastic interest rates

(in a structural model) helps the model better predict bond yield spreads. The empirical results

from our analysis indicate that to better capture and hedge the interest rate exposure of corporate

bonds, we need to incorporate a more realistic DTSM in the existing structural models. As such,

this study helps bring the literature on structural models and the term structure literature closer

to each other.

Our paper is closely related to Schaefer and Strebulaev (2008) and extends their article in

several ways. First, we document that the two-factor MV model also fails to capture the interest

rate sensitivity of yield spread changes. Second, we show that incorporating a three-factor DTSM

helps resolve the interest rate sensitivity puzzle. Our paper also draws on insights from Collin-

Dufresne, Goldstein, and Martin (2001), who point out the importance of studying changes in the

corporate yield spread among other things. As we examine both corporate returns and spread

changes using the same class of structural models, our paper to some extent helps bridge these two

influential studies.
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The literature on empirical tests of structural models goes back to Jones, Mason, and Rosenfeld

(1984) and Ogden (1987), both of which focus on callable bonds, however. In addition to those

studies mentioned in the beginning of this paper, other studies using individual corporate bond

data include Lyden and Saraniti (2000); Bao (2009); Bao and Hou (2013); among others. The

two-factor MV model, examined in Schaefer and Strebulaev (2008) and this paper, is introduced

by Shimko, Tejima, and Van Deventer (1993). Other two-factor structural models with stochastic

interest rates include those of Kim, Ramaswamy, and Sundaresan (1993), Longstaff and Schwartz

(1995), Acharya and Carpenter (2002), and Collin-Dufresne and Goldstein (2002) etc.

The rest of the paper is organized as follows. In Section 2, we first review the class of the

Merton-Vasicek models and characterize hedge ratios implied by such models. We then present

regression models to be used to test whether the models can predict the equity and interest rate

sensitivities of corporate debt. Lastly, we define the measure of hedging effectiveness to be used in

both simulations and the empirical analysis. Section 3 discusses corporate and Treasury bond data

used in our empirical analysis. Section 4 conducts a Monte Carlo simulation to investigate time-

series regressions of both corporate bond yield spread changes and returns, using the four-factor

MV model as the data-generating process. Section 5 presents and discusses our empirical results.

Finally, Section 6 concludes.

2 Model Implications and the Empirical Methodology

In this section we first review the class of structural models with stochastic interest rates to be

considered in both simulation and empirical analysis. We then present formulas of hedge ratios

implied by these models. Next, we outline the empirical methodology to be used later in the

paper. Before proceeding, we note that for comparison and also the analytical tractability, we

follow Schaefer and Strebulaev (2008) and focus on zero-coupon bonds in Sections 2.1 and 2.2.
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2.1 Structural Models with Stochastic Interest Rates

We focus on the class of the Merton-Vasicek models in this study. The basic structure of these

models is the same as that of the Merton (1974) model, except that the risk-free interest rate is

assumed to follow a Gaussian dynamic term structure model (GDTSM).

More specifically, the firm is assumed to have a zero-coupon bond outstanding with a maturity

of T and face value of K; default can occur at T only. Let (Vt)t≥0 and (rt)t≥0 be the firm asset

value process and risk-free interest rate process, respectively. The dynamics of the underlying state

vector are given by:

dVt = Vt (rt dt+ σvdW
Q
V,t), (1)

rt = δ0 + δ′1Xt, (2)

dXt = (KQ
0,X +KQ

1,XXt)dt+ ΣXdW
Q
X,t, (3)

where σv is the asset return volatility and WQ
A a one-dimensional standard Brownian motion under

the risk-neutral measure Q; δ0 is a constant and δ1 a k× 1 parameter vector; X is a k× 1 vector of

state variables that drive the risk-free term structure. Eqs. (2) and (3) are assumed to satisfy the

canonical form as specified in Joslin, Singleton, and Zhu (2011; JSZ hereafter); see the appendix.

Note that this structural model is a combination of the Merton model and a k-factor Vesicek

term structure model. If the interest rate is constant, then k is zero and we obtain the original

Merton model. If k = 1, then we have the Shimko, Tejima, and Van Deventer (1993) model, also

referred to as the Merton-Vasicek model in Schaefer and Strebulaev (2008). Besides this model, we

also consider the special case of k = 3 in this study, given the consensus in the DTSM literature

that three factors explain all but a negligible fraction of the variation in the risk-free term structure.

For convenience, we refer to this model as a four-factor Merton-Vasicek model. One advantage of

the class of Merton-Vasicek models specified in Eqs. (1)-(3) is that hedge ratios implied by these

models are straightforward to calculate.
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2.2 Hedge Ratios in the Class of Merton-Vasicek Models

Let P Tt denote the time-t price of a default-free zero-coupon bond with maturity T and unity face

value. Given the affine structure of the interest rate process specified in Eqs. (2) and (3), P Tt is

exponential-affine in Xt and given by (Duffie and Kan 1996)

P Tt = eAx(T−t)+Bx(T−t)′Xt . (4)

The time-t price of the defaultable zero-coupon bond in this case is given as follows:

DT
t = VtN(−d1) +KP Tt N(d2), (5)

where

d1 =
ln( Vt

KPTt
) + STt /2√
STt

; d2 = d1 −
√
STt .

The variable STt denotes the variance of asset returns over the life of corporate debt. If the term

structure model is Gaussian, then STt is time-invariant. That is

STt ≡ S(T − t) =

∫ 0

T−t

(
σ2
v +B′x(s)Σ′XΣXBx(s) + 2σvBx(s)Σ′Xρ

)
ds,

where ρ is a k-dimensional vector representing the correlation between dWX,t and dWV,t. When

k = 1, the above integration can be carried out explicitly (see, e.g., Schaefer and Strebulaev 2008).

When k = 3, numerical integration is needed.

Let TY T
t and Y T

t denote respectively the time-t yields of the default-free and defaultable zero-

coupon bonds. By definition the time-t yield/credit spread of the defaultable bond equals CSTt .

Then it follows from Eq. (5) that the model-implied equity sensitivities of the defaultable bond
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return and yield spread are given as the following:

hrE ≡ ∂D/D

∂E/E
=
N(−d1)

N(d1)

E

D
; (6)

hCSE ≡ ∂(CS)

∂E/E
= − 1

T − t
N(−d1)

N(d1)

E

D
, (7)

where the time index in D (the market debt value) and E (the market equity value) is omitted,

and N(d1) is the Black-Scholes-Merton delta of a European call with the strike K. As a special

case of the above two formulas, the Merton hedge ratios, denoted h̃rE and h̃CSE , can be obtained by

replacing d1 and d2 by d̃1 and d̃2, where

d̃1 =
ln(Vt/K) + (r + σ2

v/2)(T − t)
σv
√
T − t

; d̃2 = d̃1 − σv
√
T − t.

Given the assumption that the interest rate dynamics are driven by a k-factor Gaussian process

in the model, we need k Treasury bonds with distinct maturities to hedge the interest rate risk in

corporate bond returns or yield spread changes. For illustration, consider the stacked prices on n

zero-coupon bonds with maturities M = {m1, . . . ,mn} as the following:

Pt = eAx+BxXt ,

where Bx contains rows {B′x(m − t)|m ∈ M} for each bond. To make the n × k matrix Bx

invertible, n needs to match the dimension of the state vector Xt. Suppose k Treasury bonds are

used as hedging instruments. It can be shown that the k model-implied interest rate sensitivities

of the corporate bond return can be calculated as follows:

hrM =
KP Tt N(d2)

DT
t N(d1)

B′x(T − t)B−1
x . (8)
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Consider the special case where k = 1 and a single m-year Treasury security is used for hedging.

Both B′x(T − t) and B−1
x become scalars. Also, under the JSZ canonical form, we have rt = Xt. It

follows from Eq. (8) that

hrm ≡
∂D/D

∂Pm/Pm
=
KP Tt N(d2)

DT
t N(d1)

· e
(T−t)KQ

1,X − 1

e(m−t)KQ
1,X − 1

. (9)

Note that empirically, the estimation of KQ
1,X may suffer from potential model misspecification

and sample uncertainty as the sample may not be long enough to achieve estimation consistency

and may be contaminated with measurement errors. In that case, the estimated hedge ratio may

not be very close to hrm. Nonetheless, Eq. (9) suggests that using a Treasury bond with the same

maturity as that of the corporate bond helps reduce the bias. When m = T , the second ratio on

the right-hand side of the equation equals one and, as a result, hrm is much less sensitive to KQ
1,X .

It can be shown that the k sensitivities of credit spreads to Treasury bond returns can be written

as follows:

hCSM ≡
∂(CS)

∂P/P
=

(
−KP

τ
t N(d2)

DN(d1)τ
+

1

τ

)
Bτ ′
x B−1

x . (10)

2.3 Regressions Incorporating Model-Implied Hedge Ratios

One objective of this study is to include model-implied hedge ratios in a regression test to see

whether the four-factor Merton-Vasicek model provides good predictions of hedge ratios for both

corporate bonds and credit spreads, in the spirit of Schaefer and Strebulaev (2008; SS) who focus

on the Merton-implied equity sensitivity of corporate bond returns.

We consider hedge ratios implied by the (two-factor) Merton-Vasicek model first. Specifically,

we estimate the following set of regression models for each firm i in a given sample:

rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t + βri,10h

r
i,10rx

10
t + εi,t; (11)

∆CSTi,t = αCS + βCSi,Eh
CS
i,Er

E
i,t + βCSi,10h

CS
i,10r

10
t + εi,t, (12)
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where rxTi,t and CSTi,t are respectively the excess return and yield spread change for bond-i (with

maturity T ) in month t; rEi,t and rxEi,t respectively the month-t return and excess return on the stock

of firm i; r10
t and rx10

t respectively the month-t return and excess return of the 10-year Treasury. In

addition, hri,E and hri,10 denote the Merton-Vasicek sensitivities of corporate bond returns to equity

return and the 10-year Treasury return, respectively; hCSi,E and hCSi,10 the model-implied sensitivities

of spread changes to equity return and the 10-year Treasury return, respectively.

To test the null that these slope coefficients are equal to one, we follow Collin-Dufresne, Gold-

stein, and Martin (2001; CDGM) and SS to focus on the means of the slope coefficients estimated

from the given sample and examine whether the means are close to one or not. As shown later,

results from our empirical analysis indicate that while the null that βri,E = 1 is not rejected, the

null that βri,10 = 1 is strongly rejected, consistent with SS. Additionally, we find that similar results

hold for hedge ratios on yield spread changes that are included in regression (12). That is, the

(two-factor) Merton-Vasicek model fails to capture the interest rate sensitivity of corporate debt.

As mentioned earlier, the four-factor Merton-Vasicek model with a more realistic DTSM may help

mitigate this “interest rate sensitivity puzzle.”

As such, we augment each of regressions (11) and (12) with two more Treasury securities along

with related model-implied hedge ratios and estimate the following augmented regressions for each

firm i:

rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t + βri,0.5h

r
i,0.5rx

0.5
t + βri,2h

r
i,2rx

2
t + βri,10h

r
i,10rx

10
t + εi,t; (13)

∆CSTi,t = αCS + βCSi,0.5h
CS
i,0.5r

0.5
t + βCSi,2 h

CS
i,2 r

2
t + βCSi,10h

CS
i,10r

10
t + βCSi,Eh

CS
i,Er

E
i,t + εi,t, (14)

where rmt and rxmt denote respectively the month-t return and excess return of the m-year Treasury

security, withm = 0.5, 2; hri,m and hCSi,m respectively the sensitivities of excess corporate bond returns

and spread changes to returns on the m-year Treasury. Note that all the sensitivities included in

the above two regressions are calculated using the four-factor Merton-Vasicek model.

8



2.4 Hedging Effectiveness

Regression analysis allows us to examine whether a new model provides more accurate predictions

of hedge ratios than the existing model. Another useful exercise worth doing is to see whether

hedging effectiveness improves under the proposed four-factor Merton-Vasicek model.

As in Green and Figlewski (1999), we assume that the objective of an investor is to minimize

the monthly volatility of his hedged bond portfolio position. Suppose that at the end of month j,

the investor hedges a portfolio of Nj corporate bonds with Treasury bonds and the host/underlying

equity, and makes no additional trade until the end of month j+ 1. At the end of month j+ 1, the

position is closed out and the hedging error over the one-month period can be computed as follows:

erj+1 =

∑Nj
i=1 φi,jDi,j

(
rDi,j+1 −H ′i,jrHi,j+1

)
∑Nj

i=1 φi,jDi,j

,

where φ denotes the number of each bond held in the portfolio, Hj stacked hedge ratios determined

at the end of month j, and rHj+1 the returns on hedging instruments over month j + 1. Hedging

errors for credit spreads can be computed in a similar way. In our empirical analysis, we form six

portfolios based on bond ratings at the end of each month, with φ set equal to the full amount of

outstanding principal.

Following Bertsimas, Kogan, and Lo (2000), we use as the summary statistic for hedging errors

the terminal root mean squared hedging error (RMSE) at the end of our sample. Note that RMSE

is equal to the volatility of hedged position if the mean hedging error is zero. For comparison,

we also compute the RMSE of the unhedged bond portfolio (Hi,j = 0), denoted RMSEu. One

measure of hedging effectiveness for strategy l calculates the reduction in the RMSE as a result of

hedging as the following:

HEff = 1− RMSEl

RMSEu
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When the hedge works perfectly, then HEff = 1. If HEff is negative, it implies that hedging in-

creases volatility relative to the unhedged position. In general, we expect the hedge to be imperfect,

and HEff to be bounded between zero and one.

3 Data

3.1 Corporate Bond Data

We use corporate bond data from Mergent FISD and Enhanced TRACE over the period July

2002–December 2012 in this study. FISD reports details for corporate debt securities, including

information about the name of the issuer, seniority, coupon, face value, issuance date, maturity

date, credit rating (from the S&P, Moody’s, and Fitch), and redemption features etc. Enhanced

TRACE provides information on bond transactions, such as the date and time of execution, the

transaction price, and the yield to maturity at time of transaction. In particular, Enhanced TRACE

includes more high-yield bond transactions and more precise information about transaction volumes

than the “standard” TRACE does.

We apply the following standard filters to construct our sample of corporate bonds: (1) The

issue’s Mergent bond type is in “U.S. corporate debentures” or “U.S. corporate MTN” categories

(CDEB or CMTN, respectively); (2) The issuer is an industrial firm; and (3) Bonds are denominated

in U.S. dollars, senior unsecured, without embedded options, and with a fixed coupon rate. These

filters lead to a sample of 5,305 straight bonds issued by 1,161 companies, which may or may not

have relevant trading records complied in TRACE.

We next implement Dick-Nielsen (2013)’s algorithm to identify and correct reporting errors in

TRACE data, and more specifically restrict our sample to bond transaction data without dupli-

cates, reversals, and corrections/cancelations. We also exclude trades with commissions (agency

transactions), special sale condition, special price, and less than $100,000 in volume (Bessembinder

et al., 2009; Dick-Nielsen, 2009; Dick-Nielsen et al., 2012). Additionally, we apply Rossi (2014)’s

price sequence filter to remove transaction prices that appear to be problematic. Finally, following
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Collin-Dufresne, Goldstein, and Martin (2001; CDGM), we exclude observations with time-to-

maturity less than 4 years. The resulting sample includes a total of 3,800,272 trades on 1,272 bond

issues.

To match TRACE with CRSP and COMPUSTAT, we link each bond’s cusip to its issuer’s

permno in CRSP and gvkey in COMPUSTAT. The coverage rate of the matching in our sample

is 88%. We assume that financial statements become available 45 days after the last day of each

quarter. Following CDGM, we calculate monthly firm leverage ratios by interpolating values of

debt level between quarters.1

3.2 Treasury Bond Data

We take the underlying quotes on individual Treasury bonds from the CRSP Master file of monthly

Treasury bonds. Data on these quotes are used to calculate Treasury bond returns, except for the

10-year maturity for which we use the monthly series of (adjusted) 10-year bond returns from the

CRSP US Treasury and Inflation (MCTI) dataset (following Schaefer and Strebulaev 2008). In the

calculation of bond excess returns, we use 1-month Treasury bill rates from the CRSP Monthly

Risk-Free Rates file as the risk-free rate.

Quotes on individual bonds are also used to construct yields of zero-coupon Treasury bonds,

data necessary for estimating a dynamic term structure model (DTSM). The CRSP Fama-Bliss

zero yield data set—widely used in the term structure literature—includes bonds with maturities

up to five years only. However, a majority of corporate bonds in our sample, especially investment-

grade bonds, have more than five years to maturity (the median maturity of all corporate bonds

included in our raw sample is 6.78 years). As such, we need to extend the Fama-Bliss data to

longer maturities. Following Le and Singleton (2013), we apply similar filters and algorithms (the

so-called “bootstrap” method) as described by Fama and Bliss (1987) to data on individual bonds.

And we construct a set of monthly “Fama-Bliss” zero yields with maturity up to ten years over

1In robustness checks, we reestimate all relevant regressions using leverage ratios that are calculated based on the
latest available balance sheet. The results are qualitatively similar to what we obtain using leverages based on linear
interpolation.
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the period 1990–2012.2 This allows us to estimate a DTSM with at least 10-year data when we

implement and estimate a structural model recursively in our empirical analysis (Section 5).

3.3 Corporate Bond Returns and Credit Spreads

For corporate bond i at month t, we calculate its end-of-month dirty price Bi,t as the volume-

weighted average of all trades within 7 days of the month-end. Given consecutive monthly prices,

the month-t bond log-return is given by ri,t = ln(Bi,t + Ci,t)− ln(Bi,t−1), where Ci,t is the coupon

paid in month t. To make sure that our yield-spread and return series are constructed consistently,

we do not compute monthly bond yields as the volume-weighted average of yields reported in each

transaction and we instead solve for the month-t bond yield Yi,t using the bond price obtained in

the first step.

The yield spread, CSi,t, is measured against the actual yield of the nearest-maturity Treasury.

Note that interpolated yields are not used here in order to be consistent with the analysis of hedging

effectiveness discussed in Section 5, where actual Treasury bonds rather hypothetical ones need to

be used as a hedging instrument.3 We remove upper 1% and lower 1% tails of the credit spreads in

order to avoid the influence of outliers. Changes in credit spreads at time t, ∆CSi,t are calculated

as CSi,t − CSi,t−1.

Lastly, following Schaefer and Strebulaev (2008), we require a corporate bond to have at least 20

consecutive monthly observations to be included in the sample—given that our empirical analysis

focuses on time series regressions.4 This leads to the final sample of 533 corporate bonds from 245

issuers.

2Extending the “bootstrap” method to maturities beyond ten years is limited by the fact that there are much fewer
observations available for yields on such individual bonds (see, e.g., Gürkaynak, Sack, and Wright 2007). Instead, we
use actual yields of Treasury bonds from the CRSP for maturities longer than 10 years.

3In an earlier version of the paper we also consider two alternative methods for constructing Treasury yields: One
is to linearly interpolate the yields of two nearest-maturity Treasuries (following CDGM). The other is to construct
the entire spot curve using a cubic spline curve and then obtain the yield of a Treasury with the same maturity
and coupon rate as the corporate bond. Results from yield spread regressions indicate that the main findings are
qualitatively the same.

4In one earlier version of the paper we also use the Lehman and Datastream bond data, where this filter has little
impact, and obtain qualitatively the same results.
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Table 1 provides summary statistics on both monthly yield spreads and changes in the spread,

for both the full sample and subsamples grouped by subperiod, leverage, rating and maturity.

Overall, there are 34,324 bond-months in the whole sample, with the average credit spread of

about 2.52%. The median spread is about 1.51% and the standard deviation 4.03%, indicating

that credit spreads are widely dispersed and right-skewed. As expected, corporate yield spreads

are much higher and more dispersed after July 2007, a few months after the collapse of two Bear

Stearns subprime hedge funds. On average both the level and volatility of bond spreads have been

generally restored to their pre-crisis numbers since October 2009, when the U.S. unemployment

rate peaked at 10.1%.

Table 2 summarizes returns and excess returns on corporate bonds in our sample. Note that

corporate bond returns are skewed to the left with fat tails (with a kurtosis of 52.58). In addition,

returns on short-term bonds are substantially more skewed than long-term ones. Compared to

investment-grade bonds, high-yield bonds tend to have a higher volatility and are more likely to

suffer extreme losses.

4 Simulation Studies

This section conducts numerical simulations to examine a given structural model’s ability to pre-

dict hedge ratios for both corporate bond returns and yield spreads. As true data-generating

processes (DGP) are known by construction in such exercises, they allow us to have a better un-

derstanding of why hedge ratios implied by a particular structural model may or may not work.

More importantly, results from such simulations provide guidance for our empirical analysis of

model-implied hedge ratios using actual corporate bond data.

4.1 The Test Procedure

We conduct our simulation analysis in the following steps: First, given time series of Vt and

Xt generated by a particular DGP, we compute in each period the prices of corporate bonds
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and Treasury bonds based on Eq. (4) and (5). Next, we construct time series of independent

variables (corporate bond returns and spread changes) and of independent variables, which include

equity returns and Treasury bond returns. Then, a hypothetic hedger, who may or may not

correctly specify the data-generating process, estimates the model she has in mind using observed

bond data. With estimated model parameters, the hedger calculates hedge ratios for both corporate

bond returns and spread changes in each period. Lastly, the performance of estimated hedge ratios

is recorded at the end of sample. For comparison, results on hedge ratios implied by the Merton

model are always reported, regardless of the DGP perceived by the hedger.

In our simulation exercises, given a DGP, we generate 1,000 samples (trials) of 15 years of daily

data for each of six rating classes ranging from B to AAA. For a given rating category, the number

of bonds simulated in each trial is set equal to that for the same rating group in our empirical

sample (for instance, the number of BBB bonds used is 160). Every bond has an initial maturity

of 20 years so it has 5 years to maturity at the end of our regression sample period. This range of

bond maturities is largely consistent with CDGM’s empirical sample in which all bonds matures

in at least 4 years and the median maturity is about 10.2 years. We construct times series of bond

returns and credit spreads using price observations at the end of each month. For comparison,

we specify firms in different rating categories to have different values of initial leverage and asset

volatility. In particular, we use the corresponding parameter values of rating-specific D0/V0 and

σv as estimated by Schaefer and Strebulaev (2008; Table 7).

We choose the four-factor Merton-Vasicek model as the DGP in the baseline simulation analysis,

motivated by the stylized fact documented in the term structure literature that at least three factors

are needed in order for a GDTMS to adequately capture the behavior of the yield curve. For

illustration and validation of our simulation procedure, we also consider the (two-factor) Merton-

Vasicek model (Shimko, Tejima, and Van Deventer 1993) to be the DGP but present the analysis

in the appendix.5

5In an earlier version of the paper we also consider the following extensions of the Merton model: a jump-diffusion
model allowing for jumps in the asset value, a model with stochastic asset volatility, the Black and Cox (1976), and
Longstaff and Schwartz (1995) models. Simulation results indicate that even when each of these four models is used as
the DGP, Merton equity hedge ratios for corporate bond returns and spread changes are pretty good approximations.
This finding provides further evidence on the robustness of the main result of Schaefer and Strebulaev (2008).
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4.2 Hedge Ratios Implied by the Two-Factor Merton-Vasicek Model

This subsection investigates the performance of the (two-factor) Merton-Vasicek model, which is

close to the original Merton (1974) model albeit a misspecified model in our simulated economy by

construction. In other words, the hedger tries to estimate the original Vasicek model using yield

data generated from a three-factor GDTSM.6

Consider first the results from regressions of corporate bond excess returns against either stock

excess returns, or Treasury bond excess returns, or both, reported in columns 2 through 7 of Table 3.

When interpreting these results, we need to bear in mind that firms in our simulated economy are

much more homogeneous than those in our real sample. Consequently, regression coefficients across

firms in each rating group are not as diverse as those in our empirical results, which lead to small

standard errors in the computation of t-statistics. Therefore, for a given degree of deviation from

unity, the null hypothesis is more likely to be rejected in simulations than in empirical analysis.

Results from univariate regressions show that the estimates of the coefficient βri,E are insignifi-

cantly different from one regardless of rating categories (Panels A1), indicating that on average the

Merton-Vasicek model captures the return’s sensitivity to equity even though it is a misspecified

model. Interestingly, using the Merton hedge ratio (h̃ri,E) leads to the same conclusion although

the estimates of β̃ri,E are generally a bit lower than those of βri,E .

The Merton-Vasicek model clearly overestimates the corporate bond return’s interest rate sen-

sitivity. But using a Treasury security with the same maturity as that of the corporate bond (Panel

A4) reduces the bias notably relative to using a fixed 10-year Treasury (Panel A3). The robustness

achieved by matching maturities is suggested by Eq. (9).

Results from bivariate regressions reported in Panel A5 show that βri,E is still insignificantly

different from one and that βri,10 is significantly below one (ranging from 0.54 to 0.60), indicating

that equity returns and Treasury bond returns affect corporate bond returns separately. It is worth

6Eq. (9) shows that in this situation the hedger needs to estimate only two parameters regarding interest rate
dynamics, KQ

1,r and σr. As far as hedging is concerned, it makes little difference whether a “completely affine” or
“essentially affine” model (Duffee, 2002) is estimated. Joslin and Le (2013) find that fitting under the risk-neutral
measure is typically given more priority when there is a tension in simultaneous fitting of the physical and risk-neutral
dynamics. Therefore, the only damage caused by estimating a “completely affine” model is a highly underestimated
KP

1,r. Unreported simulation results confirm this conjecture.
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noting that the simulation results shown in this panel are quite similar to the empirical results

obtained from the same regression with real data (see Panel D of Table 5). Panel A6 conveys the

same message as Panel A4 does: replacing the 10-year Treasury in Panel A5 by a Treasury with

the same maturity as the corporate bond helps narrow the gap between the slope coefficient and

one.

Consider next the regression results for corporate bond yield spread changes, reported in

columns 9 through 14 of Table 3. Let’s focus on bivariate regressions (Panels B5 and B6). Notice

that the null that βCSi,E equals unity is rejected except for AAA and B bonds, the two smallest rating

groups in our sample. The null that βCSi,10 equals unity is rejected except for B bonds. And the null

that βCSi,E equals unity is rejected regardless of rating groups. Nonetheless, in those cases where the

null is rejected, the magnitude of βCSi,E ranges from 1.04 for BB bonds to 1.17 for AA bonds, the

magnitude of βCSi,10 from 1.07 for BB bonds to 1.13 for AAA bonds, and that of βCSi,τ from 1.11 for

B bonds to 1.18 for AA bonds. That is, the magnitudes of these three regression coefficients are

reasonably close to unity.

To summarize, the above simulation results indicate that although it is misspecified, on average

the Merton-Vasicek model captures the equity sensitivity, especially for corporate bond returns.

However, the model considerably over-predicts the interest rate sensitivity of corporate bond re-

turns, and it under-predicts that of credit spreads albeit to a less extent.

Panels C1 through C6 report results on the effectiveness of hedging corporate bond returns

(columns 1 through 6) or yield spread changes (columns 7 through 12) with different hedging

instruments. We make a few observations from these results. First, using equity to hedge spread

changes is much more effective than to hedge corporate bond returns (Panels C1 and C2). This

implies that to some extent the models are more useful for hedging spreads than for hedging returns.

Also, the Merton equity hedge ratio is often more effective than the two-factor MV equity hedge

ratio, as it does not depend on term structure parameters. Therefore, it offers some robustness

for hedging spreads when the interest rate process is misspecified. This effect is stronger for the

spreads of speculative-grade bonds, in which the interest rate risk plays a small role.
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Second, using a maturity-matching Treasury bond as a hedging instrument is much more effec-

tive than using a 10-year Treasury note. Finally, hedging with both equity and maturity-matching

Treasuries is much more effective than using equity along with a fixed-maturity T-note. On the

other hand, since the two-factor Merton-Vasicek model misspecifies the equity sensitivity of corpo-

rate bond returns, adding equity as an additional hedging instrument could damage the hedging

performance. Therefore, we find that values of hedging effectiveness in Panel C6 are lower than

corresponding numbers reported in Panel C4.

4.3 Hedge Ratios Implied by the Four-Factor Merton-Vasicek Model

This subsection considers hedge ratios implied by the four-factor Merton-Vasicek model itself. Note

that even though this model coincides with the DGP in this exercise, it is assumed that the hedger

does not observe the true model parameters. As such, she needs to estimate the three-factor

GDSTM first and then calculates hedge ratios using the estimated model. Another implication of

this is that three Treasury securities are essential to fully hedge the interest rate risk. Following

JSZ, we assume that 6-month, 2-year, and 10-year Treasury yields are observed with measurement

error,7 and that the hedger uses Treasuries with these maturities as hedging instruments. Note that

these three yields captures to a large extent the first three principal components of yield curve, as

y10 roughly corresponds to the “level” factor, y10 − y0.5 the “slope” factor, and y2 − (y10 + y0.5)/2

the “curvature” factor.

Table 4 presents results from both regressions of corporate bond returns (Panels A1 through

A3) and those of yield spreads (Panels B1 through B3) against either equity return, or returns

of the aforementioned three Treasury securities, or both. If we focus on Panels A3 and B3, a

few observations can be made from these two panels. First, both βri,E and βCSi,E are insignificantly

different from one, regardless of rating groups. Second, coefficients on excess Treasury returns are

much closer to one compared to the results in Panel A5 of Table 3. Although the null hypothesis

is still rejected in some cases, the absolute deviation of average coefficients from one are all within

7The hedger is assumed able to identify these Treasury bonds that are priced exactly. Hence, she uses these three
yields as observed factors when estimating the P-measure dynamics. See Section 2 of JSZ for details.
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0.08. Third, coefficients on Treasury returns are all insignificantly different from one except for

the βCSi,0.5 in two rating groups; even for these two classes the t-statistics are marginally significant.

Overall, we find that a correct identification of DGP significantly improves the model’s ability to

predict hedge ratios, especially for the interest rate sensitivities.

Columns 1 through 6 in Panels C1-C3 shows effectiveness on hedging bond returns. We interpret

these results by comparing them to corresponding panels in Table 3. While a more realistic GDTSM

only provides a marginal improvement in hedging the firm-specific risk (Panels C1), it dramatically

increases the effectiveness of interest-rate-risk hedging (Panels C2 against Panel C3 of Table 3).

Even if we use as benchmark the numbers in Panel C4 of Table 3, which result from a robust

hedging scheme, hedging with three Treasuries still offers nontrivial advantage. Results in Panel

C3 suggest that, due to the sampling uncertainty and estimation errors, we should not expect to

have a perfect hedge even when the DGP is correctly specified. This point of view is relevant when

we interpret our empirical results.

When we combine these results with those in columns 7 through 12, we can draw the following

conclusion. First, using equity to hedge spread changes is still much more effective than to hedge

corporate bond returns (Panel C1). Second, using Treasuries to hedge is much more effective for

hedging corporate bonds than for hedging yield spread changes (Panel C2). Finally, if our objective

is to minimize RMSEs, hedging with both equity and three Treasuries does not always lead to the

best performance; this result holds for both corporate bond returns and spread changes.

We next conduct an empirical analysis to investigate the performance of hedge ratios implied by

both the one- and Four-Factor Merton-Vasicek models, based on real data on Treasury securities,

individual corporate bonds, and stocks.

5 Empirical Results

This section conducts an empirical analysis of hedge ratios for both corporate bond returns and

yield spreads, implied by both the two- and four-factor Merton-Vasicek models. We first consider

a regression analysis of hedge ratios implied by the two-factor model. We then redo the regression
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analysis using hedge ratios implied by the four-factor Merton-Vasicek model. Lastly, we investigate

the effectiveness of hedging corporate bond returns or yield spreads based on these two models.

Note that for each model we recursively estimate the parameters governing interest rate dynamics,

using Treasury yields from January 1990 to the month in which hedge ratios are to be calculated.

Estimation of Vt and σv is based on daily observations over a 3-month rolling window (Campbell

et al., 2008).

5.1 Regressions on Merton-Vasicek Hedge Ratios

We estimate bivariate regressions (11) and (12) along with some special cases of these models,

and summarize regression results for corporate bond returns in Table 5 and those for yield spread

changes in Table 6, by rating groups. Specifically, for each bond in a given rating category, we

estimate time-series regressions of excess returns on corporate bonds (or yield spread changes)

against either equity, or Treasury, or both. We then report the means of estimated regression

coefficients over individual bonds in a given rating group. Note that the t-statistics shown in the

table are no longer based on the flipping Fama-Macbeth approach as adopted by CDGM. Instead,

we estimate the standard error using the Schaefer and Strebulaev (2008) method that takes into

account the cross-sectional covariations in coefficient estimates.

Consider return regressions first. Results from univariate regressions, reported in Panels A

through C, indicate that while the mean estimate of βri,E is insignificantly different from one, the

mean estimate of βri,10 (or βri,T ) is significantly different from one, regardless of rating groups.

However, the fact that the mean βri,E ≈ 0.25 for AAA bonds indicates substantial cross-sectional

variation in the βri,E estimates for the 17 bonds in this rating group. These results for the slope esti-

mates are consistent with evidence from simulations (Panels A1 through A4 of Table 3), indicating

that the data-generating process used in simulation captures some important aspects of corporate

bond returns. Also, note that as the rating decreases, the R2 of regressions against equity increases

from 1.5% for AAA bonds to 23.6% for B bonds (Panel A) while the R2 of regressions against the

Treasury decreases (Panels B and C). For instance, the R2 against the 10-year T-note ranges from
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1.3% for B bonds to 55.1% for AAA bonds. That is, while equity affects mainly excess returns on

HY bonds, Treasuries affect mainly excess returns on IG bonds.

Panel D of Table 5 reports results from bivariate regressions against both the equity and 10-

year T-note. Note that the main implications from these results are consistent with those from

univariate regression results (Panels A and B). That is, the null that βri,E = 1 is still not rejected

and the null that βri,10 = 1 is strongly rejected, regardless of rating groups. Specifically, the average

βri,10 ranges from 0.52 to 0.71 for IG bonds, is about 0.03 for BB bonds, and 0.22 for B bonds.8

This finding is consistent with Schaefer and Strebulaev (2008), who note that the Merton-Vasicek

model’s failure in capturing the interest rate sensitivity of corporate bond returns “remains an

interesting puzzle” (page 3).9 Below we document that there exists a similar puzzle regarding

the interest rate sensitivity of corporate yield spread changes (Panel D of Table 6). Section 5.2

shows that both puzzles can be largely resolved by incorporating a three-factor DTSM into the

Merton-Vasicek model.

Consider next the results from regressions of yield spread changes, reported in Table 6. As the

univariate regression results (Panels A through C) are largely consistent with those from bivariate

regressions (Panel D), we focus on the latter in the discussion that follows in this subsection. We

make three observations from Panel D. First, the null that βCSi,E = 1 is not rejected, regardless of

bond ratings; that is, the Merton-Vasicek model also predicts the equity sensitivity of corporate

yield spread changes. This finding complements Schaefer and Strebulaev (2008)’s for the equity

sensitivity of corporate bond returns. Second, the null that βCSi,10 = 1 is strongly rejected except

for AA bonds. And the Merton-Vasicek model underestimates the interest rate sensitivity of yield

spread changes. Third, if we exclude AAA bonds, the R2 increases as the rating decreases, going

from 11% for AA bonds to 27% for B bonds.

8Untabulated results indicate that replacing the 10-year T-note by a T-year Treasury matching the maturity of
the corporate bond in the bivariate regressions leads to a larger coefficient on the Treasury return (βri,T ) but the null
is still rejected.

9The average βri,10 ranges from 0.31 to 0.41 for IG bonds, is 0.32 for BB bonds, and -0.19 for B bonds in Schaefer
and Strebulaev (2008; Table 11).
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To summarize, the regression results based on the Merton-Vasicek model confirm the main

finding of Schaefer and Strebulaev (2008) for the sensitivities of corporate bond returns and im-

portantly, show that the similar findings obtain for the sensitivities of yield spread changes.

5.2 Regressions on Four-Factor Merton-Vasicek Hedge Ratios

Given the implications from simulation results represented in Section 4.3 and the insights from the

term structure literature, we consider a four-factor model that incorporates a three-factor GDTSM

into the Merton model and conduct a regression analysis of hedge ratios implied by this four-factor

model.

Consider regression results for corporate bond returns first, reported in Table 7. Notice from

Panel A of the table that incorporating a multi-factor term structure model does not affect the

Merton-Vasicek model’s ability to predict the corporate bond return’s equity sensitivity. Comparing

Panel B of the table with Panel B of Table 5, we can see that augmenting regressions of corporate

bond excess returns on excess returns on 10-year T-notes with excess returns on the 6-month T-

bills and 2-year T-notes raises the R2 considerably except for AA and A bonds. Importantly, βri,10

becomes much higher (and closer to one) under the augmented regressions. In particular, βri,10 is

not significantly different from one for BB bonds and about 0.61 for B bonds. Recall from Panel

B of Table 5 that the (two-factor) Merton-Vasicek model is unable to capture the interest rate

sensitivities of excess returns on corporate bonds in these two rating groups.

Panel C of Table 7 reports the results from regressions of excess corporate bond returns on four

hedge ratios implied by the four-factor Merton-Vasicek model, including the equity sensitivity and

three interest rate sensitivities. Here are a few observations from the table. First, the null that

βri,E = 1 is still not rejected, regardless of rating groups. Second, βri,10 is significantly different from

one for BBB and BB bonds only. Even for these two rating groups, the average βri,10 increases

substantially when the four-factor model implied hedge ratio, hri,10, is incorporated into the regres-

sions. More specifically, the average βri,10 increases from 0.52 under the two-factor model to 0.84

for BBB bonds, and from 0.03 under the two-factor model to 0.66. These results indicate that
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incorporating a multi-factor DTSM allows us to better capture the dynamics of the yield curve and

thus the interest rate sensitivities of corporate bond returns.

Consider next regressions of yield spread changes on hedge ratios implied by the four-factor

Merton-Vasicek model. Results from univariate regressions against equity returns, reported in

Panel A of Table 8, are consistent with those under the two-factor Merton-Vasicek model (Panel A

of Table 6). For instance, βCSi,E is insignificantly different from one, regardless of rating categories.

And equity return is more important to spread changes than to corporate bond returns, as can be

seen from the average full sample (adjusted) R2 being 9.3% for the spread regressions, the same

as that for the return regressions (Panel A of Table 7)—as mentioned before, return regressions

are usually expected to have much higher R2 than otherwise identical spread regressions. Panel

B of Table 8 shows that the three coefficients on the interest rate sensitivities are insignificantly

different from one in most cases. Lastly, note from Panel C of the table that none of the regression

coefficients are statistically different from one, except in one case where βCSi,10 = 1.3 (with a t-value

of 2.01) for BB bonds.

To summarize, the results from the regression analysis presented in this subsection indicate that

incorporating a more realistic DTMS into the Merton-Vasicek model allows us to fully capture the

interest rate sensitivities of yield spread changes. In addition, doing so also significantly improves

the model’s ability to capture the interest rate sensitivities of corporate bond returns and thus

mitigates the “interest rate sensitivity puzzle” noted by Schaefer and Strebulaev (2008).

Before proceeding to the analysis of hedging effectiveness, we make one remark about potentials

reasons for the inability of the four-factor Merton-Vasicek model to fully capture the interest rate

exposure of corporate bond returns. Recent evidence has shown that excess returns on Treasury

bonds contain information beyond what is contained in (default-free) yield curve factors (e.g.,

Cochrane and Piazzesi 2005; Duffee 2011). That is, the three-factor DTSM included in the four-

factor MV model is missing some other predictors of excess returns on Treasury bonds. However,

this is not necessary a problem for predictions of hedge ratios on spread changes as spread changes

are much less affected by Treasury returns than corporate bond returns are.
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5.3 Hedging Effectiveness

Regression results presented in Sections 5.1 and 5.2 show that the four-factor Merton-Vasicek model

helps mitigate the “interest rate sensitivity puzzle.” This subsection examines whether hedging

effectiveness improves under this four-factor model.

For comparison, we analyze hedging effectiveness under the two-factor Merton-Vasicek model

first, and report results on hedging corporate bond returns in Panel A and those on hedging spread

changes in Panel B of Table 9. Note from Panel A that while using equity to hedge corporate bond

returns is more effective for HY bonds, using Treasury to hedge is more effective for IG bonds. In

addition, using a Treasury with the same maturity T as that of the hedged corporate bond is more

effective than using a fixed maturity 10-year Treasury, as implied from Eq. (9). Results shown in

Panel B indicate that for HY bonds, model-based hedging of spread changes is often more effective

than that of corporate bond returns. Also, it is worth noting from both panels that when equity is

used as the hedging instrument, the Merton-based hedge is often more effective than the two-factor

model based hedge. This finding provides further evidence on the robustness of the Merton equity

hedge ratios.

Panel C reports results on the effectiveness of hedging corporate bond returns based on the four-

factor Merton-Vasicek model. Comparing this panel with Panel A, we see that the effectiveness of

hedging with equity is not affected much under the four-factor model. On the other hand, hedging

with Treasury securities becomes much more effective for investment-grade bonds under this model.

For instance, the measure of hedging effectiveness HEff increases from 0.34 to 0.61 for AAA bonds,

0.31 to 0.54 for AA, and 0.24 to 0.38 for A, under the four-factor model. When equity and the

three Treasuries are used together to hedge corporate bond returns, HEff goes from 0.50 to 0.59

(a 18% of increases) for AAA bonds and increases more than 10% for A bonds.

Comparing Panels D and B of Table 9, we see that hedging spread changes with Treasuries

is much more effective under the four-factor model, especially for investment-grade bonds. For

instance, HEff is more than doubled for upper tier investment-grade bonds, almost doubled for
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BBB bonds (increasing from 3.9% to 7.3%), and increases from 3.0% to 4.8% for BB bonds, and

2.3% to 2.9% for B bonds.

Overall, the above results show that when Treasuries are used to hedge either IG corporate

bond returns or spread changes, hedging effectiveness substantially improves under the four-factor

model.

6 Conclusion

This paper studies hedge ratios on corporate bond returns and yield spread changes, implied by

structural models with stochastic interest rates. Specifically, we consider the class of the models

where the constant interest rate in the original Merton (1974) model is replaced by a Gaussian

dynamic term structure model (GDTSM). We implement two specifications in this analysis: the

two-factor Merton-Vasicek model and the four-factor one that incorporates a three-factor GDTSM

(which has not been studied in the literature). For each of these two models, we examine its ability

to predict hedge ratios and hedging effectiveness under the model, and compare the ability to hedge

interest rate risk to its ability to hedge equity returns.

We find that while it provides quite accurate predictions of the equity sensitivity of corporate

bond returns, the two-factor Merton-Vasicek model fails to capture their interest rate sensitivity,

consistent with the existing literature. Furthermore, we find the same pattern with the model

implied sensitivities of yield spread changes. That is, the structural model allowing for only simple

term structure dynamics has difficulty capturing the interest rate sensitivity of corporate debt,

regardless of whether corporate bond returns or yield spread changes are considered.

We next examine the four-factor Merton-Vasicek model that includes a three-factor GDTSM

and thus allows for much richer term structure dynamics compared to the two-factor Merton-

Vasicek. The idea behind this is that as the majority of the price changes for investment-grade

bonds are related to Treasury bond price changes, incorporating a more realistic DTSM should help

a structural credit risk model better predict the interest rate sensitivity of corporate bonds. Our

results show that indeed this four-factor model largely captures the (interest-rate) level sensitivity
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of corporate bond returns and, in addition, provides quite accurate predictions of the yield spread

change’s sensitivity to the entire yield curve. Importantly, we also find evidence that for investment-

grade bonds in our sample, hedging effectiveness substantially improves under the four-factor model.

Although there is an enormous theoretical literature on structural modeling of credit risk,

including a number of studies investigating the role of stochastic interest rates in a structural bond

pricing framework, very few such models go beyond one-factor DTSMs. Partly, this reflects the

stylized fact documented in the literature that allowing for stochastic interest rates does little to

improve the ability of the model to predict bond yield spreads. However, our results indicate that

to better capture and hedge the interest rate exposure of corporate bonds, we need to incorporate

a more realistic DTSM in the existing structural models. In another words, the empirical results

from our analysis provide support for structural models that draw more from the term structure

literature.
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A Gaussian Dynamic Term Structure Models (GDTSMs)

We begin with the canonical representation of GDTSMs devoloped by JSZ, which defines the most

general admissible GDTSM for a given dimension of the state vector. JSZ show that any canonical

GDTSM can be transformed to a unique GDTSM parameterized by ΘX = (γQ, kQ∞,ΣX ,K
P
0,X ,K

P
1,X).

It follows that bond pricing is fully determined by ΘQ
X = (γQ, uQ∞,ΣX), a subset of ΘX that governs

the risk-neutral dynamics of state variables,

rt = ı ·Xt, (15)

dXt = (KQ
0,X +KQ

1,XXt)dt+ ΣXdW
Q
X,t, (16)

pTt = Ax(ΘQ
X , T − t) +Bx(ΘQ

X , T − t)
′Xt,

where ı is a vector of ones, KQ
0,X = [kQ∞ 01×(k−1)]

′, KQ
1,X has the real Jordan form determined by

the eigenvalue vector γQ, ΣX is lower triangular and εQt ∼ N(0, IN ). pTt denotes the time-t log-price

of a zero-coupon bond maturing at T ; {Ax(T − t), Bx(T − t)} satisfy a form of what is known as a

Riccati equation. {KP
0,X ,K

P
1,X} determine the physical measure dynamics,

dXt = (KP
0,X +KP

1,XXt)dt+ ΣXdW
P
X,t. (17)

If there is no restriction imposed on the market price of risk Λt,

Λt = Σ−1
X

(
KP

0,X −K
Q
0,X + (KP

1,X −K
Q
1,X)Xt

)
,

= Σ−1
X (λ0 + λ1Xt) ,

then {KP
0,X ,K

P
1,X} are free parameters.
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In simulation and empirical analysis, we assume that the yields of k zero-coupon bonds, with

maturities M = {m1, . . . ,mk}, are measured without error,

YMt = −pMt ◦M−1

= ÃMx + B̃Mx Xt.

where B̃Mx = −BMx ◦ (M−1 · ι′) are yield loadings on state factors. According to Theorem 1 in JSZ,

the canonical GDTSM (16)–(17) is observationally equivalent to a GDTSM in which the stacked

yields YMt can serve as the factors,

rt = δ0 + δ1Yt,

dYt = (KQ
0,Y +KQ

1,Y Yt)dt+ ΣY dW
Q
X,t,

dYt = (KP
0,Y +KP

1,Y Yt)dt+ ΣY dW
P
X,t,

where K1,Y = B̃Mx K1,XB̃Mx
−1

and K0,Y = B̃Mx K0,X −K1,Y ÃMx .

In this study, we estimate GDTSMs using JSZ’s maximum likelihood (ML) estimator. Their

estimation methods features a complete separation of the P-measure parameters {KP
0,Y ,K

P
1,Y } from

those governing risk-neutral bond pricing ΘQ
X . Absent further restrictions, the ML estimators of

{KP
0,Y ,K

P
1,Y } are recovered by standard linear projection. Our full sample for estimation spans

from 1990 to 2012. The parameters in our simulation analysis are based on a one-time estimation

using the whole sample. The value of estimated parameters are reported in Table 10. In our

empirical analysis, GDTSMs are estimated recursively: hedge ratios for August 2002 are computed

using model estimates based on observations from January 1990 through July 2002; at the end of

August, we repeat this exercise using observations of one additional month, and so on.
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B Simulation Results Based on the Shimko et al. (1993) Model

This appendix examines the performance of the Merton sensitivities in the two-factor Merton-

Vasicek economy with stochastic interest rates (Shimko et al. 1993). Under this data-generating

process (DGP), the short rate rt is assumed to follow the Vasicek (1977) dynamics:

drt = κ(r̄Q − rt)dt+ σrdW
Q
r,t. (18)

As is the case of multiple-factor GDTSMs, when we estimate the Vasicek (1977) model we pick

one particular maturity for which the zero yield is assumed to be uncontaminated by idiosyncratic

noise. Specifically, in our empirical and simulation analysis related to the Vasicek model we assume

that all yields except for the 10-year bond share an identical standard deviation of measurement

error,

Y T
t = Ã(T − t) + B̃(T − t)rt + ηt, ηt ∼ N(0, σ2

η).

It is well-known that empirical implementation of one-factor DTSMs leads to large estimates of ση.

For instance, Cheridito, Filipovic, and Kimmel (2007) estimate a variety of one-factor Gaussian

and square-root models and their estimates of ση ranges from 1.13% to 1.59%. If we use our entire

sample to estimate the Vasicek model, σ̂η becomes smaller, but still at 0.59%. To assess the impact

of measurement error on the hedging performance of structural models, we run our simulation

based on three different values of ση: 1%, 0.5% and 0.1%. The last value is close to the magnitude

of ση estimated from a three-factor model.10

Tables 11 and 12 illustrates the effect of ση’s magnitude on the performance of estimated hedge

ratios. In this simulation analysis, the data-generating process is the Shimko et al. (1993) model and

the hedger uses the correct model to compute optimal hedge ratios. If ση = 0, model parameters

can be estimated almost perfectly, given a sufficiently long sample. Therefore, the estimated hedge

ratios should accurately characterize the sensitivity of corporate bonds to hedging instruments.

10With our whole sample, the ση estimated from three-factor GDTSM is 7.8 basis points; this value is also used in
our simulation study as reported in Tables 3 and 4.
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The main message conveyed by Table 11 is that the hedger is able to obtain reasonably accurate

hedge ratios only in the case of ση = 0.1%. In particular, results in Panels A3 and A5 indicate

that when the measurement error is large, the slope coefficients corresponding to hr10rx
10
t are well

below one, which resemble the regression pattern as reported in Schaefer and Strebulaev (2008).

Empirically, the hedger implicitly acknowledges large measurement error if she relies on the Shimko

et al. (1993) model (or other structural models with one-dimensional interest rate process) to

compute hedge ratios. Hence, the empirical result of βr10 � 1 is actually to be expected. With that

being said, we also observe from Panels A1 and A5 that hrE does not match the true equity sensitivity

when ση is large. This is inconsistent with the evidence reported in Schaefer and Strebulaev (2008)

and in our Section 5, which suggests that measurement error along cannot replicate the empirical

results of regression tests. To account for the joint patterns of βrE ≈ 1 and βr10 � 1, we need to

introduce the channel of model misspecification, as demonstrated in Section 4.

We also find that the hedger can achieve robustness by using the Treasury bond with the same

maturity as that of the hedged corporate bond to hedge the latter’s interest rate risk. With this

hedging scheme, the accuracy of estimated hedge ratios seems almost affected by the magnitude of

measurement error, as shown in Panels A4 and A6. For most rating classes, the average regression

coefficient βrT is almost indistinguishable from one. This superior accuracy is also translated to

hedging effectiveness. Table 12 shows that when we use a 10-year Treasury bond alone to hedge

corporate bond returns, the hedging performance is acceptable only if ση is at the magnitude

of 10 basis points. If ση is as large as 1%, hedging with a fixed-term bond would lead to even

higher RMSEs than no hedging at all. In contrast, hedging with matched maturity would reduce

the RMSE by at least 85%. For AAA bonds, the latter hedging scheme results in nearly perfect

hedges. The same remarks applies to the hedging of credit spreads as well.

C Estimation of Firm Specific Inputs

To compute the model-implied sensitivities as shown in Eq. (6)–(10), we need to estimate the

following two parameters: the market value of firm V and the standard deviation of asset returns
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σv. At end of each month, we calibrate the Merton (1974) model to real data to obtain the value of

these parameters. The essence of our calibration is to match the predicted equity value and equity

volatility with their observed values. This is equivalent to solving the following two equations at

each point of time:

Et = AtN(d1)−Ke−r(T−t)N(d2); (19)

σE =
At
Et
N(d1)σv, (20)

where K is the total debt outstanding and σE the equity volatility. This approach is used in

several studies including Jones, Mason, and Rosenfeld (1984) and Campbell, Hilscher, and Szilagyi

(2008).11

We also estimate V and σv using two alternative methods: the KMV method (Bohn and Crosbie

2003) and the ML estimation method. The former focuses on Eq. (19) and calculates σv as the

sample standard deviation of the time series of estimated asset returns, ln(Vt+1)− ln(Vt); the latter

is based on a likelihood function of stock price movement that is introduced in Duan (1994), who

utilizes Eqs. (1) and (19) but not Eq. (20). We find that empirically these alternative estimators

barely help improve the performance of implied sensitivities in our sample. More importantly, both

methods require the whole time series to be observed, which prohibits real-time estimation of hedge

ratios.

Following Eom, Helwege, and Huang (2004), we estimate K using the firm’s total liability

(Compustat item LTQ). An alternative measure is the firm’s short-term debt (the larger of DLCQ

and LCTQ) plus one half of its long-term debt (DLTTQ), first proposed by Moody’s KMV (Bohn

and Crosbie 2003). However, we find that although the latter specification has little impact on the

model prediction of sensitivities, it lowers the performance of the model spreads in explaining the

temporal variations in market spreads. The time to maturity T − t is set equal to the bond-specific

maturity instead of the average maturity of all bonds issued by the firm. While this specification

11Note that we can obtain At and σv by solving (19) and (20) either iteratively or simultaneously. In our imple-
mentation, we try both ways for each firm and pick those estimates that result in smaller RMSEs.
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leads to conceptual inconsistency, as the same firm could have different estimated asset values, it

actually improves the model prediction of hedge ratios as well as the hedging performance. The

risk-free rate r used is the Treasury yield with time to maturity of T − t.
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Table 1: Summary Statistics on Corporate Bond Yield Spreads

# of
obs.

Yield Spreads (%) Changes in the Yield Spread (%)

Mean Median Stdev 5% 95% Mean Median Stdev 5% 95%

Full sample 34324 2.525 1.512 4.026 0.395 7.102 -0.002 -0.013 1.632 -0.884 0.874

Panel A: Subperiod groups

2002.07-2007.06 21453 1.877 1.176 2.512 0.361 5.516 -0.038 -0.017 1.156 -0.738 0.594

2007.07-2009.10 6095 4.818 2.730 7.561 0.861 14.094 0.142 0.041 3.110 -1.757 2.233

2009.11-2012.12 6776 2.513 1.901 2.160 0.420 6.562 -0.019 -0.028 0.675 -0.716 0.669

Panel B: Leverage groups

L 6865 1.031 0.772 1.459 0.249 2.483 0.004 -0.002 0.527 -0.457 0.514

2 6868 1.344 1.088 1.281 0.347 3.037 -0.004 -0.008 0.514 -0.533 0.553

3 6862 2.105 1.715 1.833 0.604 4.736 -0.031 -0.029 0.876 -0.806 0.670

4 6881 2.421 1.776 2.029 0.570 6.112 -0.023 -0.017 0.842 -0.931 0.900

H 6848 5.731 4.007 7.475 0.740 15.240 0.045 -0.023 3.376 -1.896 2.233

Panel C: Rating groups

AAA 1129 8.740 5.861 9.210 1.166 23.203 -0.135 -0.056 5.250 -4.286 4.101

AA 994 0.615 0.550 0.358 0.157 1.198 0.003 -0.003 0.231 -0.332 0.323

A 2744 0.827 0.649 0.627 0.201 2.053 0.000 -0.006 0.344 -0.456 0.436

BBB 11381 1.184 0.987 0.763 0.378 2.640 -0.003 -0.006 0.420 -0.525 0.517

BB 10164 2.207 1.677 1.892 0.561 5.637 -0.020 -0.022 0.760 -0.867 0.764

B 4928 3.985 3.079 5.414 1.119 8.091 0.057 -0.029 2.196 -1.179 1.379

C & NR 2984 6.154 4.655 6.988 1.568 15.375 0.013 -0.026 3.082 -1.848 1.995

Panel D: Maturity groups

Short (4-8yr) 12691 2.099 1.095 3.731 0.313 6.485 -0.008 -0.020 1.496 -0.938 0.915

Median (9-15yr) 5684 2.983 1.967 4.069 0.630 7.863 0.011 -0.013 1.561 -0.899 0.928

Long (>15yr) 10949 2.975 1.875 4.374 0.722 7.563 0.001 -0.006 1.865 -0.798 0.776

This table reports summary statistics for both levels of the monthly corporate bond yield spread and changes in the
bond yield spread by sample period (Panel A), leverage (Panel B), rating category (Panel C), and time-to-maturity
(Panel D), respectively. Five leverage groups are formed from low (L) to high (H) according to the average leverage
for firms in the entire sample period. Rating groups are formed based on the time-series average of each bond’s S&P
ratings over the sample period. Three maturity groups are formed according to time-to-maturity: between 4 and 8
years (Short), between 9 and 15 years (Median), and greater than 15 years (Long). The sample period is from July
2002 to December 2012 and divided into two subperiods: 2002:Q3-2007:Q2, 2007:Q3-2009:Q4 and 2010:Q1-2012:Q4.
N is the number of bonds in each category; the “5%” and “95%” show the 5th and 95th percentile.
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Table 2: Summary Statistics on Corporate Bond Returns

# of
obs.

Corporate Bond Returns Excess Corp. Bond Returns

Mean Median Stdev 5% 95% Mean Median Stdev 5% 95%

full sample 34324 0.817 0.547 4.888 -3.793 5.940 0.534 0.310 4.424 -3.519 5.109

Panel A: Subperiod groups

2002.07-2007.06 21453 0.799 0.494 3.956 -3.134 5.242 0.486 0.216 3.605 -3.023 4.451

2007.07-2009.10 6095 0.740 0.686 8.557 -9.380 10.762 0.415 0.407 7.776 -8.698 8.631

2009.11-2012.12 6776 0.938 0.691 3.182 -2.877 5.482 0.790 0.624 2.693 -2.683 4.641

Panel B: Leverage groups

L 6865 0.560 0.388 2.344 -2.521 4.028 0.303 0.159 2.085 -2.390 3.350

2 6868 0.652 0.438 2.823 -2.528 4.339 0.337 0.162 2.274 -2.403 3.493

3 6862 0.950 0.685 3.280 -3.149 5.764 0.680 0.466 2.946 -2.882 4.690

4 6881 0.894 0.652 4.266 -4.010 6.165 0.607 0.432 3.735 -3.678 5.230

H 6848 1.028 0.785 8.765 -8.667 10.609 0.741 0.594 8.096 -8.272 9.186

Panel C: Rating groups

AAA 1129 0.580 0.352 2.365 -2.821 4.580 0.415 0.232 2.203 -2.793 4.012

AA 994 0.461 0.339 1.990 -2.230 3.326 0.270 0.149 1.852 -2.141 2.996

A 2744 0.675 0.470 2.982 -2.746 4.548 0.390 0.226 2.594 -2.553 3.667

BBB 11381 0.876 0.615 3.627 -3.315 5.875 0.606 0.377 3.087 -3.052 4.910

BB 10164 0.850 0.796 5.367 -5.435 7.062 0.545 0.545 5.032 -5.251 6.316

B 4928 0.972 0.884 8.637 -8.833 10.700 0.676 0.626 8.224 -8.678 9.520

C & NR 2984 2.453 1.272 13.525 -12.504 18.789 1.817 0.927 11.892 -11.232 15.269

Panel D: Maturity groups

Short (4-8yr) 12691 0.654 0.444 3.030 -1.945 3.829 0.405 0.214 2.763 -1.920 3.305

Median (9-15yr) 5684 0.972 1.018 6.315 -5.561 7.590 0.678 0.784 5.837 -5.236 6.431

Long (>15yr) 10949 1.116 1.052 7.048 -6.785 8.657 0.758 0.746 6.300 -6.093 7.360

This table reports summary statistics for both corporate bond returns and excess returns relative to the one-month
T-bills by sample period (Panel A), leverage (Panel B), rating category (Panel C), and time-to-maturity (Panel D),
respectively. Five leverage groups are formed from low (L) to high (H) according to the average leverage for firms
in the entire sample period. Rating groups are formed based on S&P ratings of bonds. Three maturity groups are
formed according to time-to-maturity: between 4 and 8 years (Short), between 9 and 15 years (Median), and greater
than 15 years (Long). The sample period is from July 2002 to December 2012 and divided into two subperiods:
2002:Q3-2007:Q2, 2007:Q3-2009:Q4 and 2010:Q1-2012:Q4. N is the number of bonds in each category; the “5%” and
“95%” show the 5th and 95th percentile.

36



Table 3: Simulation Analysis of Hedge Ratios Implied from the Two-Factor Merton-Vasicek Model

AAA AA A BBB BB B AAA AA A BBB BB B

Panel A1: rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t Panel B1: ∆CSTi,t = αCS + βCSi,Eh

CS
i,Er

E
i,t

βri,E 0.35 0.82 0.84 0.89 0.93 0.97 βCSi,E 1.38 1.18 1.14 1.10 1.06 1.02

(−0.10) (−0.30) (−0.99) (−1.06) (−0.95) (−0.83) (1.36) (2.40) (4.98) (4.77) (3.13) (1.91)

Panel A2: rxTi,t = αr + β̃ri,E h̃
r
i,Erx

E
i,t Panel B2: ∆CSTi,t = αCS + β̃CSi,E h̃

CS
i,Er

E
i,t

β̃ri,E −0.05 0.78 0.82 0.88 0.92 0.97 β̃CSi,E 1.42 1.14 1.10 1.07 1.04 1.01

(−0.12) (−0.33) (−1.04) (−1.18) (−1.10) (−0.92) (1.08) (1.59) (3.25) (2.92) (1.90) (1.06)

Panel A3: rxTi,t = αr + βri,10h
r
i,10rx

10
t Panel B3: ∆CSTi,t = αCS + βCSi,10h

CS
i,10r

10
t

βri,10 0.65 0.65 0.64 0.64 0.63 0.61 βCSi,10 1.28 1.16 1.10 0.97 0.94 0.89

(−7.50) (−13.78) (−29.31) (−29.09) (−20.54) (−16.25) (0.75) (0.40) (0.12) (−0.81) (−1.37) (−2.08)

Panel A4: rxTi,t = αr + βri,Th
r
i,T rx

T
t Panel B4: ∆CSTi,t = αCS + βCSi,T h

CS
i,T r

T
t

βri,T 0.88 0.84 0.84 0.84 0.85 0.86 βCSi,T 1.51 1.35 1.30 1.26 1.20 1.12

(−4.33) (−6.21) (−10.44) (−10.81) (−8.53) (−5.85) (3.33) (5.20) (10.45) (9.25) (5.46) (2.64)

Panel A5: rxTi,t = αr + βri,10h
r
i,10rx

10
t + βri,Eh

r
i,Erx

E
i,t Panel B5: ∆CSTi,t = αCS + βCSi,10h

CS
i,10r

10
t + βCSi,Eh

CS
i,Er

E
i,t

βri,E 0.80 0.99 0.97 0.99 0.99 0.99 βCSi,E 1.37 1.17 1.12 1.08 1.05 1.01

(−0.06) (−0.04) (−0.29) (−0.24) (−0.29) (−0.43) (1.37) (2.36) (4.72) (4.43) (2.75) (1.44)

βri,10 0.60 0.57 0.57 0.56 0.56 0.54 βCSi,10 1.13 1.11 1.10 1.09 1.07 1.05

(−4.97) (−12.38) (−26.43) (−27.78) (−18.53) (−15.46) (2.04) (3.17) (5.31) (5.02) (2.66) (1.27)

Panel A6: rxTi,t = αr + βri,Th
r
i,T rx

T
t + βri,Eh

r
i,Erx

E
i,t Panel B6: ∆CSTi,t = αCS + βCSi,T h

CS
i,T r

T
t + βCSi,Eh

CS
i,Er

E
i,t

βri,E 1.25 1.11 1.08 1.06 1.03 1.01 βCSi,E 1.36 1.16 1.11 1.08 1.04 1.01

(0.94) (1.60) (3.11) (2.88) (1.73) (0.72) (1.38) (2.35) (4.62) (4.28) (2.58) (1.23)

βri,T 0.71 0.69 0.68 0.68 0.67 0.65 βCSi,T 1.24 1.18 1.16 1.15 1.13 1.11

(−5.23) (−7.75) (−11.11) (−12.24) (−11.13) (−11.20) (2.38) (3.96) (7.90) (7.81) (5.76) (5.06)

Continued on next page
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Table 3 – Continued

Effectiveness of

Hedging Corporate Bond Returns Hedging Corporate Bond Spreads

AAA AA A BBB BB B AAA AA A BBB BB B

Panel C1: Hedging with Equity

-0.04 0.01 0.07 0.10 0.08 0.07 0.23 0.52 0.57 0.61 0.64 0.65

(0.09) (0.02) (0.01) (0.01) (0.02) (0.04) (0.36) (0.11) (0.04) (0.03) (0.03) (0.02)

Panel C2: Hedging with Equity (Merton)

-0.01 0.01 0.08 0.10 0.08 0.04 0.25 0.58 0.65 0.69 0.72 0.74

(0.01) (0.02) (0.01) (0.02) (0.02) (0.04) (0.33) (0.11) (0.04) (0.03) (0.03) (0.02)

Panel C3: Hedging with 10-Year Treasury Bonds

0.02 0.04 0.10 0.12 0.11 0.04 -0.36 -0.03 0.00 0.02 0.04 0.03

(0.22) (0.12) (0.05) (0.05) (0.07) (0.09) (4.85) (0.85) (0.35) (0.23) (0.18) (0.11)

Panel C4: Hedging with T -Year Treasury Bonds

0.82 0.77 0.77 0.74 0.65 0.48 -0.16 0.04 0.00 0.03 0.07 0.08

(0.03) (0.02) (0.01) (0.01) (0.02) (0.04) (1.12) (0.09) (0.04) (0.04) (0.04) (0.03)

Panel C5: Hedging with Equity & 10-Year Treasury Bonds

-0.02 -0.02 -0.01 -0.02 -0.02 -0.05 -0.21 -0.05 0.03 0.11 0.34 0.48

(0.13) (0.06) (0.03) (0.03) (0.04) (0.07) (3.44) (0.86) (0.51) (0.40) (0.39) (0.25)

Panel C6: Hedging with Equity & T -Year Treasury Bonds

0.66 0.65 0.72 0.68 0.61 0.36 0.09 0.53 0.52 0.58 0.69 0.74

(0.19) (0.05) (0.01) (0.01) (0.02) (0.03) (1.11) (0.16) (0.06) (0.04) (0.03) (0.02)

Panels A1-A6 and B1-B6 report results, by rating groups, from regressions of excess corporate bond returns and
spread changes against either equity, or Treasury (10- or (T − t)-year), or both, using simulated 15 years of monthly
data from the four-factor Merton-Vasicek model. 1,000 samples are generated for each rating class, and each bond
has an initial maturity of 20 years. Parameters governing the interest-rate dynamics are listed in Table 10; the rating-
dependent initial leverage (D0/V0) and asset volatility (σv) are both from Schaefer and Strebulaev (2008). The hedger
is assumed to mis-specify the data-generating process: she estimates model parameters and computes hedge ratios as
if observed data is generated from a two-factor (the Shimko et al. (1993)) model. The reported coefficient values are
averages of the resulting 1,000 regression estimates for the corresponding slope coefficient. Associated t-statistics in
parentheses are calculated based on the standard error estimator outlined in Collin-Dufresne, Goldstein, and Martin
(2001). The t-statistics for coefficients related to the Merton (1974) sensitivities, (h̃CSi,E , h̃

r
i,E), and the Merton-Vasicek

sensitivities, (hri,E , h
r
i,10, h

r
i,T , h

CS
i,E , h

CS
i,10, h

CS
i,T ), are computed against unity. Panels C1-C6 reports simulation results

on the effectiveness of hedging corporate bond returns (columns 2 through 6) or yield spreads (columns 7 through
13) with either equity, or Treasury, or both. Monthly rebalancing is assumed. Measure of hedging effectiveness used
is 1-RMSEh/RMSEu, where RMSEh (RMSEu) is the root mean square error of the hedged (unhedged) position.
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Table 4: Simulation Analysis of Hedge Ratios Implied from the Four-Factor Merton-Vasicek Model

AAA AA A BBB BB B AAA AA A BBB BB B

Panel A1: rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t Panel B1: ∆CSTi,t = αCS + βCSi,Eh

CS
i,Er

E
i,t

βri,E 0.67 0.83 0.84 0.88 0.92 0.97 βCSi,E 1.02 1.02 1.02 1.02 1.02 1.01

(−0.13) (−0.46) (−1.53) (−1.65) (−1.38) (−0.96) (0.30) (0.84) (2.82) (3.01) (2.45) (1.75)

Panel A2: rxTi,t = αr + βri,0.5h
r
i,0.5rx

0.5
t + βri,2h

r
i,2rx

2
t + βri,10h

r
i,10rx

10
t Panel B2: ∆CSTi,t = αCS + βCSi,0.5h

CS
i,0.5r

0.5
t + βCSi,2 h

CS
i,2 r

2
t + βCSi,10h

CS
i,10r

10
t

βri,0.5 0.91 0.92 0.92 0.92 0.92 0.92 βCSi,0.5 0.81 0.83 0.86 0.87 0.89 0.90

(−0.47) (−0.64) (−1.33) (−1.28) (−0.84) (−0.53) (−0.32) (−0.50) (−0.87) (−0.82) (−0.47) (−0.27)

βri,2 0.92 0.93 0.93 0.93 0.93 0.93 βCSi,2 0.94 0.94 0.95 0.95 0.95 0.96

(−1.27) (−2.17) (−4.46) (−4.22) (−2.64) (−1.48) (−0.19) (−0.36) (−0.75) (−0.72) (−0.44) (−0.27)

βri,10 0.98 0.98 0.98 0.98 0.98 0.98 βCSi,10 0.98 0.99 0.99 0.99 0.99 0.99

(−1.64) (−2.76) (−5.88) (−5.55) (−3.41) (−1.97) (−0.18) (−0.32) (−0.70) (−0.68) (−0.46) (−0.33)

Panel A3: rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t + βri,0.5h

r
i,0.5rx

0.5
t Panel B3: ∆CSTi,t = αCS + βCSi,Eh

CS
i,Er

E
i,t + βCSi,0.5h

CS
i,0.5r

0.5
t

+βri,2h
r
i,2rx

2
t + βri,10h

r
i,10rx

10
t +βCSi,2 h

CS
i,2 r

2
t + βCSi,10h

CS
i,10r

10
t

βri,E 0.85 0.96 0.96 0.97 0.98 0.99 βCSi,E 1.01 1.01 1.01 1.01 1.00 1.00

(−0.12) (−0.20) (−0.82) (−0.92) (−0.76) (−0.46) (0.24) (0.40) (1.33) (1.37) (1.01) (0.54)

βri,0.5 0.92 0.92 0.92 0.92 0.92 0.92 βCSi,0.5 0.87 0.90 0.90 0.91 0.91 0.91

(−0.48) (−0.65) (−1.35) (−1.34) (−0.93) (−0.79) (−0.61) (−0.94) (−1.97) (−2.02) (−1.34) (−0.83)

βri,2 0.92 0.93 0.93 0.93 0.93 0.93 βCSi,2 0.94 0.95 0.95 0.95 0.96 0.96

(−1.27) (−2.21) (−4.61) (−4.43) (−3.11) (−2.39) (−0.47) (−0.88) (−1.95) (−1.95) (−1.33) (−1.00)

βri,10 0.98 0.98 0.98 0.98 0.98 0.98 βCSi,10 0.99 0.99 0.99 0.99 0.99 0.99

(−1.63) (−2.82) (−6.16) (−5.97) (−4.12) (−3.14) (−0.38) (−0.77) (−1.71) (−1.69) (−1.21) (−0.97)

Continued on next page
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Table 4 – Continued

Effectiveness of

Hedging Corporate Bond Returns Hedging Corporate Bond Spreads

AAA AA A BBB BB B AAA AA A BBB BB B

Panel C1: Hedging with Equity

-0.01 0.03 0.14 0.17 0.11 0.06 0.52 0.68 0.69 0.71 0.74 0.74

(0.03) (0.04) (0.02) (0.02) (0.04) (0.08) (0.13) (0.09) (0.03) (0.03) (0.02) (0.02)

Panel C2: Hedging with Three Treasury Securities

0.88 0.82 0.76 0.77 0.80 0.65 0.11 0.06 -0.01 0.03 0.07 0.14

(0.15) (0.12) (0.10) (0.10) (0.09) (0.15) (0.14) (0.09) (0.07) (0.04) (0.06) (0.09)

Panel C3: Hedging with Equity & Three Treasury Securities

0.79 0.62 0.52 0.49 0.56 0.44 0.20 0.62 0.55 0.61 0.67 0.72

(0.11) (0.08) (0.07) (0.06) (0.07) (0.10) (0.26) (0.18) (0.13) (0.10) (0.08) (0.05)

Panels A1-A3 and B1-B3 report results, by rating groups, from regressions of excess corporate bond returns and spread
changes against either equity, or Treasury (10- or (T−t)-year), or both, using simulated 15 years of monthly data from
the four-factor Merton-Vasicek model. 1,000 samples are generated for each rating class, and each bond has an initial
maturity of 20 years. Parameters governing the interest-rate dynamics are listed in Table 10; the rating-dependent
initial leverage (D0/V0) and asset volatility (σv) are both from Schaefer and Strebulaev (2008). The hedger is assumed
to correctly specify the data-generating process but she needs to estimate model parameters using observed equity
prices and Treasury yields, with the latter contaminated with measure error. With estimated parameters, hedge
ratios are computed based on Eq. (6)–(8) and Eq. (10). The reported coefficient values are averages of the resulting
1,000 regression estimates for the corresponding slope coefficient. Associated t-statistics in parentheses are calculated
based on the standard error estimator outlined in Collin-Dufresne, Goldstein, and Martin (2001). The t-statistics for
coefficients related to model-implied sensitivities, (hri,E , h

r
i,0.5, h

r
i,2, h

r
i,10, h

CS
i,E , h

CS
i,0.5, h

CS
i,2 , h

CS
i,10), are computed against

unity. Panels C1-C3 reports simulation results on the effectiveness of hedging corporate bond returns (columns 2
through 6) or yield spreads (columns 7 through 13) with either equity, or Treasury, or both. Monthly rebalancing is
assumed. Measure of hedging effectiveness used is 1-RMSEh/RMSEu, where RMSEh (RMSEu) is the root mean
square error of the hedged (unhedged) position.
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Table 5: Regressions of Corporate Bond Returns on Merton-Vasicek Hedge Ratios

This table reports results from time-series regressions of monthly corporate bond excess returns against either
Treasury, or equity, or both that incorporate hedge ratios implied by the Merton-Vasicek model (Shimko,
Tejima, and Van Deventer 1993). rxTi,t and rxEi,t are respectively the month-t excess returns on bond-i with

T years to maturity and on firm-i’s equity. rx10t and rxTt denote the month-t excess returns of the 10-
and T -year Treasuries, respectively. hri,E , h

r
i,10, and hri,T are the sensitivities of corporate bond returns to

equity return, the 10-year Treasury return, and the T -year Treasury return, respectively, under the Merton-
Vasicek model. The reported coefficient values are averaged estimates across bonds. Associated t-statistics
in parentheses are computed against unity and calculated based on the standard error estimator outlined in
Schaefer and Strebulaev (2008). N is the number of bonds in each rating category. The sample period is
from July 2002 to December 2012.

All AAA AA A BBB BB B

Panel A: rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t

Intercept 0.008 0.007 0.006 0.006 0.009 0.010 0.009

(18.00) (8.59) (10.63) (11.45) (13.52) (7.45) (5.62)

βri,E 0.987 0.246 1.128 0.920 0.980 0.964 1.257

(-0.06) (-0.30) (0.16) (-0.23) (-0.07) (-0.12) (0.38)

R̄2 0.088 0.015 0.023 0.029 0.081 0.131 0.236

N 533 17 43 176 160 78 41

Panel B: rxTi,t = αr + βri,10h
r
i,10rx

10
t

Intercept 0.006 0.002 0.003 0.003 0.007 0.010 0.010

(11.90) (5.37) (4.87) (5.91) (9.65) (5.33) (5.44)

βri,10 0.379 0.656 0.667 0.561 0.509 -0.065 -0.071

(-13.74) (-7.95) (-5.53) (-7.92) (-8.12) (-7.15) (-12.23)

R̄2 0.252 0.551 0.520 0.386 0.187 0.029 0.013

Panel C: rxTi,t = αr + βri,Th
r
i,T rx

T
t

Intercept 0.006 0.002 0.003 0.003 0.007 0.008 0.010

(12.30) (4.66) (4.94) (5.85) (9.26) (8.06) (5.29)

βri,T 0.496 0.715 0.744 0.656 0.557 0.137 -0.024

(-16.29) (-6.53) (-3.93) (-8.87) (-8.14) (-11.80) (-13.06)

R̄2 0.263 0.604 0.539 0.382 0.213 0.010 0.029

Panel D: rxTi,t = αr + βri,10h
r
i,10rx

10
t + βri,Eh

r
i,Erx

E
i,t

Intercept 0.006 0.002 0.003 0.003 0.007 0.010 0.008

(11.36) (5.09) (5.71) (5.27) (10.08) (4.97) (4.21)

βri,E 1.010 0.758 0.989 1.014 0.942 0.966 1.256

(0.05) (-0.27) (-0.01) (0.04) (-0.14) (-0.11) (0.41)

βri,10 0.431 0.708 0.668 0.623 0.518 0.028 0.222

(-12.82) (-9.16) (-5.70) (-8.47) (-9.17) (-6.82) (-8.28)

R̄2 0.345 0.542 0.533 0.441 0.281 0.164 0.294
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Table 6: Regressions of Corporate Yield Spread Changes on Merton-Vasicek Hedge
Ratios

This table reports results from time-series regressions of monthly changes in the corporate bond yield spread
against either Treasury, or equity, or both that incorporate the Shimko, Tejima, and Van Deventer (1993;
STV) sensitivities. ∆CST

i,t is the month-t change in the yield spread of bond-i with T years to maturity.

rEi,t, r
10
t , and rTt denote the month-t returns on firm-i’s equity, the 10-year Treasury, and the T -year Trea-

sury, respectively. hCS
i,E , h

CS
i,10, and hCS

i,T are the sensitivities of corporate bond yield spread changes to equity
return, the 10-year Treasury return, and the T -year Treasury return, respectively, under the STV model
(a combination of the Merton and Vasicek models). The reported coefficient values are averaged estimates
across bonds. Associated t-statistics in parentheses are computed against unity and calculated based on
the standard error estimator outlined in Schaefer and Strebulaev (2008). N is the number of bonds in each
rating category. The sample period is from July 2002 to December 2012.

All AAA AA A BBB BB B

Panel A: ∆CSTi,t = αCS + βCSi,Eh
CS
i,Er

E
i,t

Intercept -0.016 -0.001 -0.007 -0.015 -0.022 0.002 0.029

(-2.31) (-0.47) (-2.49) (-3.05) (-3.53) (0.17) (0.62)

βCSi,E 1.097 0.990 0.836 1.143 1.060 1.108 1.143

(0.38) (-0.00) (-0.19) (0.33) (0.24) (0.13) (0.14)

R̄2 0.094 0.056 0.037 0.064 0.116 0.126 0.190

N 533 17 43 176 160 78 41

Panel B: ∆CSTi,t = αCS + βCSi,10h
CS
i,10r

10
t

Intercept -0.061 -0.011 -0.015 -0.028 -0.051 -0.074 -0.054

(-5.23) (-3.14) (-2.89) (-5.26) (-7.18) (-2.94) (-1.48)

βCSi,10 3.639 0.981 3.056 3.054 3.603 5.144 3.996

(7.62) (-0.01) (1.91) (3.46) (4.46) (3.95) (2.82)

R̄2 0.116 0.135 0.096 0.108 0.139 0.157 0.121

Panel C: ∆CSTi,t = αCS + βCSi,T h
CS
i,T r

T
t

Intercept -0.038 -0.013 -0.018 -0.023 -0.048 -0.058 -0.026

(-9.19) (-3.86) (-3.17) (-5.10) (-7.35) (-4.23) (-1.03)

βCSi,T 3.180 2.666 3.083 2.659 3.253 4.735 3.059

(10.90) (1.87) (3.20) (5.62) (6.29) (6.21) (2.49)

R̄2 0.135 0.193 0.136 0.123 0.148 0.147 0.133

Panel D: ∆CSTi,t = αCS + βCSi,10h
CS
i,E10r

10
t + βCSi,Eh

CS
i,Er

E
i,t

Intercept -0.030 -0.010 -0.017 -0.023 -0.046 -0.035 0.014

(-6.00) (-3.34) (-2.64) (-5.02) (-6.79) (-2.64) (0.29)

βCSi,E 1.053 1.404 0.961 0.999 1.028 1.150 1.093

(0.31) (0.34) (-0.07) (-0.00) (0.10) (0.30) (0.09)

βCSi,10 3.722 2.475 2.664 3.108 3.175 6.880 5.267

(6.84) (2.11) (1.53) (3.56) (2.80) (5.72) (2.70)

R̄2 0.182 0.180 0.105 0.132 0.202 0.215 0.274

42



Table 7: Regressions of Corporate Bond Returns on Four-Factor Merton-Vasicek
Hedge Ratios

This table reports results from regressions of corporate bond excess returns, that incorporate hedge ratios,
against either the excess equity return (Panel A), or excess returns on 0.5-, 2-, and 10-year Treasuries
(Panel B), or both (Panel C). rxTi,t, rx

E
i,t, and rxmt denote respectively the month-t excess returns on the

corporate bond, equity, and the m-year Treasury security; hri,E and hri,m are respectively the equity and
interest rate sensitivities of the corporate bond return implied by the four-factor Merton-Vasicek model,
where m = 0.5, 2, 10. The regressions are estimated for each bond, and the reported coefficient values are
averaged estimates across bonds. Associated t-statistics in parentheses are computed against unity and
calculated based on the standard error estimator outlined in Schaefer and Strebulaev (2008). N is the
number of bonds in each rating category. The sample period is from July 2002 to December 2012.

All AAA AA A BBB BB B

Panel A: rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t

Intercept 0.008 0.008 0.006 0.006 0.009 0.010 0.009

(18.04) (7.59) (10.60) (11.44) (13.53) (7.73) (5.60)

βri,E 1.010 0.685 1.133 0.921 0.981 0.966 1.262

(0.05) (-0.18) (0.16) (-0.22) (-0.07) (-0.11) (0.38)

R̄2 0.093 0.027 0.018 0.030 0.086 0.117 0.219

N 533 17 43 176 160 78 41

Panel B: rxTi,t = αr + βri,0.5h
r
i,0.5rx

0.5
t + βri,2h

r
i,2rx

2
t + βri,10h

r
i,10rx

10
t

Intercept 0.006 0.002 0.004 0.003 0.007 0.009 0.010

(12.84) (4.71) (5.74) (7.09) (9.78) (6.54) (7.01)

βri,0.5 0.788 0.828 0.843 0.829 0.795 0.834 0.518

(-7.71) (-4.73) (-2.48) (-3.92) (-4.20) (-1.99) (-4.81)

βri,2 0.815 0.850 0.916 0.836 0.815 0.845 0.554

(-6.80) (-3.68) (-1.21) (-3.94) (-3.87) (-1.89) (-4.51)

βri,10 0.836 0.856 0.903 0.855 0.835 0.888 0.607

(-6.11) (-3.73) (-1.48) (-3.60) (-3.49) (-1.39) (-3.86)

R̄2 0.272 0.623 0.524 0.372 0.237 0.088 0.130

N 533 17 43 176 160 78 41

Panel C: rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t + βri,0.5h

r
i,0.5rx

0.5
t + βri,2h

r
i,2rx

2
t + βri,10h

r
i,10rx

10
t

Intercept 0.006 0.002 0.003 0.003 0.007 0.010 0.009

(16.85) (6.79) (7.94) (8.69) (13.66) (7.77) (7.64)

βri,0.5 0.794 0.826 0.834 0.824 0.784 0.857 0.559

(-11.26) (-7.15) (-3.59) (-6.16) (-6.88) (-2.40) (-7.27)

βri,2 0.814 0.853 0.870 0.825 0.805 0.874 0.606

(-10.26) (-5.12) (-2.69) (-6.17) (-6.30) (-2.17) (-6.20)

βri,10 0.840 0.536 0.935 0.945 0.836 0.661 0.775

(-3.00) (-1.79) (-0.30) (-0.49) (-2.15) (-3.00) (-1.23)

βri,E 0.997 1.037 0.834 0.916 0.914 1.040 1.203

(-0.01) (0.04) (-0.17) (-0.13) (-0.17) (0.03) (0.35)

R̄2 0.359 0.619 0.533 0.438 0.297 0.181 0.296

N 533 17 43 176 160 78 41
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Table 8: Regressions of Corporate Yield Spread Changes on Four-Factor Merton-
Vasicek Hedge Ratios

This table reports results from regressions of yield spread changes, that incorporate hedge ratios, against
either the equity return rEi,t (Panel A), or returns on 0.5-, 2-, and 10-year Treasuries (Panel B), or both

(Panel C). ∆CST
i,t is the month-t change in the yield spread for bond-i. rxmt denotes the month-t return on

the m-year Treasury security; hCS
i,E and hCS

i,m are respectively the equity and interest rate sensitivities of the
spread change implied by the four-factor Merton-Vasicek model, where m = 0.5, 2, 10. The regressions are
estimated for each bond, and the reported coefficient values are averaged estimates across bonds. Associated
t-statistics in parentheses are computed against unity and calculated based on the standard error estimator
outlined in Schaefer and Strebulaev (2008). N is the number of bonds in each rating category. The sample
period is from July 2002 to December 2012.

All AAA AA A BBB BB B

Panel A: ∆CSTi,t = αCS + βCSi,Eh
CS
i,Er

E
i,t

Intercept -0.017 -0.002 -0.007 -0.015 -0.022 0.003 0.021

(-2.43) (-0.63) (-2.40) (-3.05) (-3.54) (0.24) (0.42)

βCSi,E 1.046 1.177 0.863 1.042 1.046 1.109 1.042

(0.25) (0.10) (-0.16) (0.15) (0.18) (0.17) (0.05)

R̄2 0.093 0.058 0.038 0.064 0.106 0.117 0.196

N 533 17 43 176 160 78 41

Panel B: ∆CSTi,t = αCS + βCSi,0.5h
CS
i,0.5r

0.5
t + βCSi,2 h

CS
i,2 r

2
t + βCSi,10h

CS
i,10r

10
t

Intercept -0.027 -0.012 -0.012 -0.020 -0.025 -0.001 -0.030

(-3.97) (-3.75) (-3.37) (-3.90) (-3.90) (-0.11) (-1.02)

βCSi,0.5 1.346 2.246 1.396 1.343 1.410 1.138 0.920

(2.70) (1.48) (0.87) (1.56) (2.03) (0.34) (-0.16)

βCSi,2 1.308 1.905 1.415 1.348 1.356 1.135 0.918

(2.48) (1.06) (1.00) (1.55) (1.85) (0.34) (-0.18)

βCSi,10 1.241 1.847 1.395 1.258 1.304 0.953 0.920

(1.99) (1.01) (0.99) (1.29) (1.62) (-0.11) (-0.18)

R̄2 0.142 0.199 0.143 0.127 0.145 0.151 0.145

N 533 17 43 176 160 78 41

Panel C: ∆CSTi,t = αCS + βCSi,0.5h
CS
i,0.5r

0.5
t + βCSi,2 h

CS
i,2 r

2
t + βCSi,10h

CS
i,10r

10
t + βCSi,Eh

CS
i,Er

E
i,t

Intercept -0.037 -0.012 -0.013 -0.020 -0.050 -0.039 0.011

(-4.78) (-2.51) (-3.45) (-3.66) (-6.23) (-2.76) (0.21)

βCSi,0.5 0.969 1.266 0.920 0.886 1.016 0.955 0.955

(-0.62) (0.64) (-0.34) (-1.27) (0.18) (-0.43) (-0.23)

βCSi,2 0.958 1.288 0.964 0.894 0.962 0.972 0.938

(-0.89) (0.89) (-0.16) (-1.21) (-0.48) (-0.29) (-0.43)

βCSi,10 1.177 1.156 1.420 1.114 1.127 1.329 1.257

(1.89) (0.91) (0.55) (1.64) (1.07) (2.01) (1.26)

βCSi,E 1.071 0.838 1.036 1.097 0.884 1.165 1.202

(0.06) (0.82) (0.07) (0.14) (-0.04) (0.05) (0.07)

R̄2 0.191 0.204 0.149 0.131 0.198 0.216 0.271

N 533 17 43 176 160 78 41
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Table 9: Effectiveness of Hedging Corporate Bond Returns and Yield Spreads

This table reports empirical results on the effectiveness of hedging corporate bond returns (Panels A and C) or
yield spreads (Panels B and D) with either equity, or Treasuries, or both. Treasuries used for hedging include
the 6-month T-bill, 2- and 10-year T-notes, and T -year Treasuries with T being the years to maturity of the
hedged corporate bond. Hedge ratios used include those based on the Merton (1974), two-factor Merton-
Vasicek (Shimko, Tejima, and Van Deventer 1993) (denoted MV), and four-factor Merton-Vasicek (4FMV)
models. Hedged portfolios are rebalanced monthly. Measure of hedging effectiveness is 1-RMSEh/RMSEu,
where RMSEh (RMSEu) is the root mean square error of the hedged (unhedged) position. The sample
period is from July 2002 to December 2012.

Hedging
Instruments

Hedging Effectiveness by Rating Groups

All AAA AA A BBB BB B

Panel A: Hedging Corporate Bond Returns (Merton-Vasicek)

Equity-M 0.101 -0.013 0.004 0.024 0.043 0.108 0.091

Equity-MV 0.091 -0.002 0.014 0.022 0.056 0.102 0.120

10y Treasury 0.085 0.344 0.314 0.236 0.041 -0.108 -0.045

T -yr Treasury 0.165 0.519 0.460 0.314 0.067 -0.059 -0.025

Equity-MV, 10y Trea. 0.172 0.390 0.374 0.304 0.106 0.016 0.099

Equity-MV, T -yr Trea. 0.252 0.501 0.457 0.342 0.195 0.094 0.181

Panel B: Hedging Corporate Yield Spreads (Merton-Vasicek)

Equity-M 0.192 -0.047 -0.091 0.125 0.154 0.194 0.112

Equity-MV 0.140 0.076 0.016 0.099 0.131 0.181 0.094

10y Treasury 0.022 -0.063 0.019 0.035 0.039 0.030 0.023

T -yr Treasury 0.033 -0.024 0.034 0.053 0.056 0.039 0.028

Equity-MV, 10y Trea. 0.119 -0.017 0.025 0.103 0.128 0.158 0.074

Equity-MV, T -yr Trea. 0.150 0.014 0.051 0.134 0.160 0.193 0.104

Panel C: Hedging Corporate Bond Returns (4F Merton-Vasicek)

Equity-4FMV 0.119 0.003 0.002 0.027 0.046 0.111 0.125

6m, 2y, 10y Trea. 0.177 0.612 0.538 0.375 0.032 -0.062 -0.048

E-4FMV, 6m, 2y, 10y Trea. 0.278 0.587 0.469 0.385 0.154 0.116 0.176

Panel D: Hedging Corporate Yield Spreads (4F Merton-Vasicek)

Equity-4FMV 0.203 0.021 0.040 0.115 0.179 0.220 0.094

6m, 2y, 10y Trea. 0.038 0.021 0.042 0.072 0.073 0.048 0.029

E-4FMV, 6m, 2y, 10y Trea. 0.165 0.027 0.042 0.139 0.189 0.222 0.086
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Table 10: Maximum Likelihood Estimates of a Three-Factor GDTSM

diag(KQ
1,X) −0.101 −0.212 −0.730

(0.024) (0.038) (0.118)

rQ∞(×102) 7.006

(0.687)

ΣX(×102) 4.730 0 0

(0.355)

−5.528 2.097 0

(0.289) (0.194)

0.818 −2.232 0.900

(0.064) (0.257) (0.043)

KP
1,X −0.146 0.274 −0.157

(0.052) (0.143) (0.073)

0.047 −0.410 0.409

(0.026) (0.182) (0.241)

−0.166 −0.140 −0.997

(0.085) (0.092) (0.239)

XP
∞(×102) 0.031 −0.023 0.005

(0.006) (0.007) (0.002)

ση(×102) 0.078

(0.003)

The three-factor Gaussian dynamic term structure model (GDTSM), specified in Eqs. (2) and (3) under Q, is
estimated with maximum likelihood using month-end Treasury yields with maturities of six months, and one, two,
three, five, seven and ten years, over the period 1990–2012. The model is normalized to the canonical form proposed
by Joslin, Singleton, and Zhu (2011). Reported parameter values are annualized, in the sense that persistence
parameters, I+K1,X , are raised to the power of 12 and volatility parameters, ΣX , are multiplied by

√
12. Quantities

in parentheses are standard errors from 1,000 Monte Carlo simulations, under the null hypothesis that the estimated
model is true; each sample of simulated data consists of 276 monthly observations of seven bond yields with the same
maturities as those used in model estimation.
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Table 11: Regression Results Based on Simulated Data Using the Two-Factor Merton-Vasicek Model

ση AAA AA A BBB BB B AAA AA A BBB BB B

Panel A1: rxTi,t = αr + βri,Eh
r
i,Erx

E
i,t Panel B1: ∆CSTi,t = αCS + βCSi,Eh

CS
i,Er

E
i,t

0.010

βri,E

−60.43 −30.40 −27.21 −19.57 −12.59 −4.29

βCSi,E

1.45 1.80 2.14 2.09 2.09 1.73

(−1.66) (−6.68) (−21.56) (−23.06) (−18.52) (−14.34) (1.54) (6.52) (21.86) (23.70) (19.51) (14.58)

0.005 1.52 −4.60 −6.62 −4.74 −3.18 −0.48 1.03 1.16 1.32 1.32 1.34 1.21

(0.03) (−1.95) (−9.76) (−10.87) (−10.14) (−7.48) (0.11) (2.18) (9.87) (10.94) (10.04) (7.48)

0.001 24.28 4.82 1.60 1.22 0.77 1.01 0.86 0.92 0.99 1.00 1.03 1.00

(1.76) (2.17) (1.23) (0.65) (−0.88) (0.04) (−1.65) (−1.96) (−0.61) (−0.04) (1.31) (0.25)

Panel A2: rxTi,t = αr + β̃ri,E h̃
r
i,Erx

E
i,t Panel B2: ∆CSTi,t = αCS + β̃CSi,E h̃

CS
i,Er

E
i,t

0.010

β̃ri,E

−425.46 −91.99 −72.20 −39.56 −19.49 −4.78

β̃CSi,E

10.30 5.26 5.31 4.00 3.08 1.88

(−0.91) (−4.01) (−12.50) (−14.14) (−12.42) (−12.16) (2.56) (6.49) (16.29) (17.54) (13.97) (12.08)

0.005 10.77 −12.78 −16.91 −9.29 −4.78 −0.51 7.22 3.33 3.17 2.44 1.92 1.30

(0.09) (−1.08) (−5.90) (−6.99) (−7.25) (−6.32) (2.82) (5.95) (13.92) (14.32) (10.86) (7.59)

0.001 152.77 13.16 3.05 1.92 0.99 1.11 6.27 2.73 2.42 1.88 1.48 1.09

(0.93) (1.46) (1.06) (1.00) (−0.04) (0.61) (3.31) (6.06) (12.81) (12.45) (8.24) (3.28)

Panel A3: rxTi,t = αr + βri,10h
r
i,10rx

10
t Panel B3: ∆CSTi,t = αCS + βCSi,10h

CS
i,10r

10
t

0.010

βri,10

0.27 0.27 0.27 0.27 0.27 0.28

βCSi,10

0.21 0.22 0.22 0.22 0.22 0.22

(−22.34) (−37.72) (−79.31) (−77.46) (−52.55) (−41.12) (−7.54) (−15.32) (−34.24) (−35.74) (−27.63) (−26.06)

0.005 0.60 0.60 0.60 0.60 0.60 0.61 0.50 0.51 0.51 0.51 0.51 0.49

(−15.26) (−26.50) (−55.38) (−53.97) (−36.57) (−27.85) (−6.15) (−12.15) (−26.83) (−27.82) (−21.08) (−19.41)

0.001 0.97 0.98 0.98 0.98 0.98 0.99 0.84 0.84 0.85 0.84 0.84 0.81

(−3.61) (−6.04) (−11.78) (−10.68) (−5.99) (−1.17) (−3.47) (−7.10) (−14.97) (−15.26) (−11.21) (−9.69)

Panel A4: rxTi,t = αr + βri,Th
r
i,T rx

T
t Panel B4: ∆CSTi,t = αCS + βCSi,T h

CS
i,T r

T
t

0.010

βri,T

1.00 1.00 1.00 1.00 1.01 1.02

βCSi,T

0.82 0.87 0.89 0.90 0.93 0.95

(1.91) (2.79) (5.33) (4.92) (2.89) (2.27) (−5.09) (−7.45) (−14.54) (−13.12) (−7.82) (−4.84)

0.005 1.00 1.00 1.00 1.00 1.01 1.01 0.91 0.92 0.93 0.93 0.94 0.93

(1.79) (3.05) (6.47) (6.65) (4.78) (4.53) (−2.58) (−4.24) (−8.70) (−8.48) (−5.86) (−5.00)

0.001 1.00 1.00 1.00 1.00 1.01 1.02 0.87 0.88 0.88 0.88 0.87 0.84

(3.13) (5.67) (11.73) (11.64) (8.41) (6.99) (−3.26) (−6.19) (−13.17) (−13.30) (−9.73) (−8.21)
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ση AAA AA A BBB BB B AAA AA A BBB BB B

Panel A5: rxTi,t = αr + βri,10h
r
i,10rx

10
t + βri,Eh

r
i,Erx

E
i,t Panel B5: ∆CSTi,t = αCS + βCSi,10h

CS
i,10r

10
t + βCSi,Eh

CS
i,Er

E
i,t

0.010

βri,T

0.32 0.32 0.31 0.31 0.31 0.30

βCSi,T

0.25 0.25 0.25 0.25 0.24 0.26

(−19.55) (−33.76) (−72.90) (−72.01) (−50.10) (−39.63) (−7.77) (−16.22) (−38.58) (−40.89) (−32.31) (−29.59)

0.005 0.69 0.69 0.69 0.69 0.68 0.67 0.56 0.57 0.57 0.57 0.57 0.58

(−10.80) (−18.89) (−40.30) (−39.79) (−27.82) (−22.34) (−5.91) (−11.62) (−26.39) (−27.76) (−21.31) (−20.06)

0.001 1.13 1.12 1.12 1.12 1.11 1.11 0.93 0.94 0.95 0.95 0.96 0.96

(11.00) (18.42) (37.73) (35.95) (23.13) (16.11) (−2.76) (−4.83) (−9.80) (−9.77) (−6.80) (−5.62)

0.010

βri,E

−64.59 −31.09 −27.36 −19.64 −12.57 −4.31

βCSi,E

1.47 1.81 2.13 2.09 2.08 1.72

(−1.78) (−6.91) (−21.87) (−23.26) (−18.58) (−14.39) (1.63) (6.66) (21.96) (23.79) (19.46) (14.66)

0.005 −9.18 −6.44 −7.05 −4.96 −3.15 −0.52 1.10 1.20 1.33 1.32 1.33 1.21

(−0.49) (−2.88) (−11.39) (−12.38) (−11.01) (−8.36) (0.58) (2.98) (11.06) (12.15) (10.66) (8.28)

0.001 6.19 1.67 0.87 0.84 0.81 0.95 0.98 0.99 1.00 1.00 1.01 1.00

(0.94) (0.94) (−0.68) (−1.20) (−1.87) (−1.12) (−0.66) (−0.61) (0.26) (0.55) (0.93) (0.67)

Panel A6: rxTi,t = αr + βri,Th
r
i,T rx

T
t + βri,Eh

r
i,Erx

E
i,t Panel B6: ∆CSTi,t = αCS + βCSi,T h

CS
i,T r

T
t + βCSi,Eh

CS
i,Er

E
i,t

0.010

βri,T

1.00 1.00 1.00 1.00 1.00 1.00

βCSi,T

0.83 0.89 0.91 0.92 0.95 0.98

(1.33) (1.12) (0.49) (−0.04) (−0.90) (−0.75) (−4.88) (−6.74) (−12.05) (−10.36) (−5.38) (−2.58)

0.005 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.95 0.96 0.97 0.98 0.99

(0.99) (1.13) (1.68) (1.39) (0.45) (0.05) (−2.38) (−3.32) (−5.96) (−5.21) (−2.68) (−1.28)

0.001 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97 0.97 0.98 0.98 0.99

(1.68) (2.53) (4.55) (4.21) (2.49) (1.41) (−2.63) (−4.24) (−8.09) (−7.52) (−4.57) (−2.64)

0.010

βri,E

0.66 0.74 0.74 0.79 0.85 0.94

βCSi,E

0.77 0.84 0.86 0.89 0.92 0.96

(−2.01) (−4.45) (−10.29) (−10.12) (−6.80) (−4.45) (−2.15) (−3.94) (−7.84) (−7.77) (−5.25) (−3.58)

0.005 0.92 0.94 0.94 0.95 0.97 0.98 0.92 0.95 0.95 0.96 0.97 0.99

(−1.14) (−2.26) (−4.83) (−4.90) (−3.41) (−2.83) (−1.32) (−2.43) (−4.91) (−5.02) (−3.57) (−2.85)

0.001 0.96 0.97 0.98 0.98 0.98 0.99 0.96 0.97 0.98 0.98 0.99 0.99

(−1.53) (−2.75) (−5.45) (−5.50) (−3.82) (−3.32) (−1.58) (−2.84) (−5.48) (−5.62) (−3.89) (−3.10)

This table reports results, by rating groups, from regressions of excess corporate bond returns (Panels A1-A6) and spread changes (Panels B1-B6) against either equity, or
Treasury (10- or T-year), or both, using simulated 15 years of data from the two-factor Merton-Vasicek model (Shimko, Tejima, and Van Deventer 1993). The rating dependent
initial leverage (D0/V0) and asset volatility (σv), and the correlation coefficient ρ of -0.15 are all from Schaefer and Strebulaev (2008). The parameters used for the interest rate
process are estimated from the 1990-2012 sample. They include κQ = 0.053, r̄Q = 0.130, σr = 0.012, κP = 0.116, and r̄P = 0.059. 1,000 samples are generated for each rating
class, and each bond has an initial maturity of 20 years. In each trial, parameters governing the interest-rate dynamics are assumed to be unknown; to determine hedge ratios,
investors need to estimate the model using observed bond yields, which are contaminated with measure error. ση denotes the standard deviation of measure error. The reported
coefficient values are averages of the resulting 1,000 regression estimates for the corresponding slope coefficient. Associated t-statistics in parentheses are calculated based on
the standard error estimator outlined in Collin-Dufresne, Goldstein, and Martin (2001). The t-statistics for coefficients related to the Merton (1974) sensitivities, (h̃CSi,E , h̃

r
i,E),

and the Merton-Vasicek sensitivities, (hri,E , h
r
i,10, h

r
i,T , h

CS
i,E , h

CS
i,10, h

CS
i,T ), are computed against unity.
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Table 12: Simulation Analysis of Hedging Effectiveness: Based on the Two-Factor
Merton-Vasicek Model

This table reports simulation results on the effectiveness of hedging corporate bond returns (columns 2
through 6) or yield spreads (columns 7 through 13) with either equity, or Treasury, or both. Parameter
T refers to the maturity of the corporate bond to be hedged. The data-generating process used is the
two-factor Merton-Vasicek model (Shimko, Tejima, and Van Deventer 1993). Model parameter values used
are described in Table 11. Hedge ratios considered include both the Merton (1974) and Merton-Vasicek
sensitivities. Monthly rebalancing is assumed. Measure of hedging effectiveness used is 1-RMSEh/RMSEu,
where RMSEh (RMSEu) is the root mean square error of the hedged (unhedged) position.

Hedging Corporate Bond Returns Hedging Corporate Bond Spreads

ση AAA AA A BBB BB B AAA AA A BBB BB B

Panel A: Hedging with Equity

1.0 -0.00 -0.01 0.00 0.00 -0.02 -0.05 0.08 0.15 0.23 0.26 0.28 0.34

(0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.05) (0.06) (0.05) (0.05) (0.05) (0.05)

0.5 -0.00 -0.00 0.02 0.03 0.01 -0.02 0.11 0.20 0.30 0.34 0.35 0.42

(0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.07) (0.08) (0.06) (0.06) (0.06) (0.06)

0.1 0.00 0.01 0.05 0.06 0.04 0.03 0.18 0.29 0.41 0.44 0.45 0.53

(0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (0.09) (0.08) (0.06) (0.06) (0.06) (0.05)

Panel B: Hedging with Equity (Merton-Based)

1.0 -0.00 -0.00 -0.00 -0.00 -0.02 -0.05 0.05 0.14 0.23 0.25 0.27 0.33

(0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.14) (0.08) (0.05) (0.05) (0.06) (0.06)

0.5 -0.00 -0.00 0.01 0.02 0.00 -0.01 0.08 0.19 0.30 0.33 0.34 0.42

(0.00) (0.00) (0.00) (0.01) (0.01) (0.02) (0.14) (0.09) (0.06) (0.06) (0.06) (0.06)

0.1 0.00 0.01 0.02 0.04 0.04 0.04 0.15 0.28 0.41 0.44 0.45 0.53

(0.00) (0.00) (0.00) (0.01) (0.01) (0.03) (0.15) (0.10) (0.06) (0.06) (0.06) (0.06)

Panel C: Hedging with 10-Year Treasury Bonds

1.0 -0.22 -0.24 -0.29 -0.29 -0.25 -0.26 -0.14 -0.13 -0.15 -0.15 -0.14 -0.13

(0.07) (0.07) (0.07) (0.07) (0.07) (0.08) (0.11) (0.08) (0.06) (0.06) (0.06) (0.05)

0.5 -0.04 -0.03 0.01 0.01 0.00 -0.02 -0.01 -0.03 -0.09 -0.09 -0.05 -0.04

(0.06) (0.06) (0.05) (0.05) (0.06) (0.07) (0.11) (0.08) (0.06) (0.06) (0.05) (0.05)

0.1 0.49 0.44 0.36 0.37 0.42 0.42 0.26 0.17 -0.01 -0.01 0.08 0.07

(0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.09) (0.07) (0.06) (0.06) (0.05) (0.04)

Panel D: Hedging with T -Year Treasury Bonds

1.0 0.99 0.98 0.94 0.93 0.91 0.85 0.30 0.17 -0.35 -0.18 0.25 0.44

(0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.11) (0.10) (0.13) (0.11) (0.06) (0.04)

0.5 1.00 0.98 0.97 0.96 0.94 0.86 0.53 0.52 0.51 0.49 0.46 0.33

(0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.08) (0.07) (0.06) (0.07) (0.06) (0.05)

0.1 1.00 0.98 0.97 0.96 0.93 0.83 0.35 0.29 0.22 0.19 0.20 0.13

(0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.09) (0.07) (0.05) (0.04) (0.05) (0.04)

Continued on next page
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Table 12 – Continued

Hedging Corporate Bond Returns Hedging Corporate Bond Spreads

ση AAA AA A BBB BB B AAA AA A BBB BB B

Panel E: Hedging with Equity & 10-Year Treasury Bonds

1.0 -0.23 -0.27 -0.38 -0.40 -0.35 -0.40 -0.04 0.05 0.14 0.17 0.20 0.27

(0.07) (0.07) (0.07) (0.08) (0.07) (0.09) (0.10) (0.10) (0.07) (0.07) (0.07) (0.07)

0.5 -0.05 -0.06 -0.09 -0.11 -0.10 -0.19 0.13 0.22 0.30 0.33 0.37 0.45

(0.06) (0.07) (0.05) (0.06) (0.06) (0.08) (0.11) (0.09) (0.07) (0.07) (0.07) (0.06)

0.1 0.47 0.37 0.23 0.20 0.25 0.16 0.66 0.65 0.56 0.59 0.69 0.79

(0.03) (0.03) (0.02) (0.03) (0.03) (0.04) (0.05) (0.05) (0.05) (0.05) (0.04) (0.03)

Panel F: Hedging with Equity & T -Year Treasury Bonds

1.0 0.96 0.91 0.82 0.78 0.79 0.70 0.30 0.17 -0.40 -0.21 0.29 0.63

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.13) (0.14) (0.15) (0.13) (0.09) (0.05)

0.5 0.95 0.89 0.83 0.80 0.79 0.64 0.68 0.68 0.54 0.61 0.77 0.87

(0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (0.06) (0.05) (0.05) (0.04) (0.03) (0.01)

0.1 0.92 0.85 0.83 0.79 0.76 0.56 0.83 0.85 0.82 0.84 0.88 0.92

(0.01) (0.01) (0.01) (0.01) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01)
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