
Time-Varying Ambiguity and Asset Pricing Puzzles

February 15, 2016

Abstract

This paper studies the effects of time-varying Knightian uncertainty (ambiguity) on asset
pricing in a Lucas exchange economy. Specifically, it considers a general equilibrium
model where an ambiguity-averse agent applies a discount rate that is adjusted not only
for the current magnitude of ambiguity but also for the risk associated with its future
fluctuations. As such, both the ambiguity level and volatility help raise asset premia
and accommodate richer dynamics of asset prices. Employing a novel measure for the
ambiguity level, we demonstrate that the estimated model can match the key moments
of equity premium and risk-free rate. More importantly, our model explains the credit
spread puzzle despite a low default probability. It also accounts for a wide range of
dynamic asset pricing phenomena, including the cyclical variations of stock prices and
credit spreads, the long-horizon predictability of stock returns and credit spreads, and
the low correlation between asset prices and consumption growth. Furthermore, the
proposed ambiguity measure is found to exhibit significant predictive power for excess
returns on equities and bonds as well as for corporate yield spreads—a finding that
justifies uncertainty channels highlighted in the model.
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1 Introduction

In economics, Knightian uncertainty (ambiguity) refers to the situation where the decision maker

is uncertain about the probability law governing the state process. Motivated by Ellsberg (1961)’s

classic experiments that highlight the distinction between ambiguity aversion and risk aversion,

various models of preference have been proposed and subsequently applied to financial economics.

A salient feature in many such models is that the degree of Knightian uncertainty is assumed to

be constant over time.1 In this paper, we show that time variations in ambiguity have significant

qualitative and quantitative effects on equilibrium asset pricing; they create an additional uncer-

tainty channel that helps to explain the equity premium puzzle, the risk-free rate puzzle, the excess

volatility puzzle, the credit spread puzzle, and a wide variety of dynamic asset pricing phenomena.

Building on the continuous-time framework of Chen and Epstein (2002), this paper considers an

exchange economy where the representative agent is not endowed with complete knowledge of the

aggregate consumption dynamics. Rather, she holds multiple priors (Gilboa and Schmeidler, 1989)

that describe the data-generating process. To make decisions robust to model misspecifications,

the agent optimally evaluates investments according to the prior that leads to the lowest expected

utility. This “worst-case” evaluation brings about a first-order effect of ambiguity, wherein the

magnitude determined by the difference between the “true” expected growth rate and the worst-

case belief used to price assets.

If the set of priors is updated over time, however, the uncertainty about future ambiguity levels

also permits a second-order effect, in the sense that the magnitude of this effect is bound to the

second moment (volatility) of the ambiguity process. In the model proposed in this paper, the

agent’s preference for early resolution of uncertainty gives rise to positive responses of the marginal

rate of substitution to ambiguity shocks. The extent to which these ambiguity shocks are priced

depends on their persistence. In studying the model’s quantitative predictions, we find both the

first-order and second-order effects of Knightian uncertainty are essential in generating high equity

premium, low risk-free rates, and excess equity volatility.

To address the credit spread puzzle,2 we consider an individual firm that chooses the optimal

default time to maximize the (levered) equity value (Leland, 1994a,b). As the uncertainty-adjusted

1This specification is termed “κ-Ignorance” in Chen and Epstein (2002). Models that correspond to this specifi-
cation include Miao (2009) and Jeong, Kim, and Park (2015).

2The term credit spread puzzle describes a finding by Huang and Huang (2012) that various structural models,
once calibrated to match historical default loss experience and leverage ratios, underpredict credit spreads, especially
for investment grade bonds. The role of time-varying market price of risk in explaining this puzzle is emphasized in
Chen, Collin-Dufresne, and Goldstein (2009).
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discount rate increases proportionately with the degree of ambiguity, an ambiguity shock would

lower the present value of a given path of future cash flows. It thus leans shareholders more towards

exercising their options to default, even if there is no news of the firm’s fundamentals. In light of the

ambiguity’s first-order and second-order effects on marginal utilities, its covariation with the default

time implies that default events would become a greater concern for the investor exactly when they

are more likely to be incurred. As a result, she demands high risk-neutral default probabilities in

valuing defaultable claims. Furthermore, given that corporate defaults cluster when the economic

outlook becomes unclear, the liquidation process can be particularly costly during such times, which

leads to lower recovery rates. Together, positive correlations of the market price of uncertainty3

and default timing—and with loss given default—generate higher credit spreads than those implied

by models with zero or constant ambiguity.

To assess the adequacy of these two risk channels for capturing the credit spread puzzle, we

perform a calibration exercise for each rating category. Based on the estimated dynamics of ag-

gregate variables, we calibrate firm-specific parameters to match historical financial ratios and

recovery rates. The calibrated model replicates the average levels of both default rates and the

credit component of corporate yield spreads for all investment and speculative grades. The em-

pirical plausibility of the proposed economic mechanism is further tested against data. Based on

a sample of defaulted companies, we find the ambiguity level highly significant in explaining the

estimated default boundary (with the expected sign). This result verifies the positive correlation

between ambiguity and corporate default date as posited by our model, which is also supported by

historical data.

The function of time-varying ambiguity is not only to reconcile momentous aspects of asset

prices but also to capture their dynamic behaviors. Even with a homoscedastic ambiguity process,

the model is able to generate time variations in asset Sharpe ratios. Empirically, the asymmetric

conditional heteroscedasticity (the fact that an increase in volatility follows a previous rise in

the ambiguity level) magnifies the pricing kernel’s covariations with the magnitude of ambiguity.

The resulting time-varying market price of uncertainty leads to important time-series predictions,

including the procyclical variation of price-dividend ratios, the countercyclical variation of credit

spreads, the long-horizon predictability of excess equity returns and credit spreads, and their weak

correlations with consumption growth.

There are a few examples of general equilibrium models that succeed in explaining the equity risk

3It is a more appropriate term here than market price of risk. For notional convenience, in this paper we refer to
“uncertainty” as both risk and ambiguity, unless “Knightian uncertainty” or “subjective uncertainty” is otherwise
used in the context.
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premium and credit spreads in a unified framework: Chen, Collin-Dufresne, and Goldstein (2009)

build on the habit-formation model of Campbell and Cochrane (1999), while Bhamra, Kuehn, and

Strebulaev (2010) and Chen (2010) use a theoretical framework in the spirit of Bansal and Yaron

(2004) that incorporates regime switching.4 This paper departs from these previous studies in three

important aspects.

Firstly, while these studies aim to explain asset pricing puzzles with macroeconomic risk,5 our

explanation is based on time-varying Sharpe ratios that are driven by changes in the ambiguity

level. This key difference underlies our model’s capacity to account for variations in asset premia

above and beyond what are captured by the business cycle. The economic intuition is that an

ambiguity shock can lead to a large reaction in the marginal rate of substitution, even without

news about the economic fundamentals.

Secondly, unlike these previous studies, which focus exclusively on investment-grade issuers, we

examine the credit spreads of speculative-grade bonds, too. As Huang and Huang (2012) emphasize,

when explaining the credit spread puzzle it is also important to generate realistic yield spreads on

high-yield bonds. Theoretically, we could account for the puzzle by imposing an extremely high

risk premium. But if the resulting model were to over-predict speculative-grade yield spreads, then

it would merely create a credit spread puzzle in the other direction. With a reasonable firm-level

calibration, our model can match the level of credit spreads across all rating classes.

Third, this paper extensively studies the the dynamic properties of equity returns and credit

spreads, including their predictability (from the price-dividend ratio) and their (weak) correlations

with macroeconomic fundamentals. These properties have not drawn sufficient attention in existing

works on the credit spread puzzle. Our model replicates these stylized facts and, more importantly,

it provides an accurate account of historical variations in stock prices and yield spreads.

With respect to implementation, an important advantage of our model is that the key driving

variable, the level of ambiguity, is measurable. This facilitates our data-driven estimation of model

parameters that does not involve market data. Specifically, we construct a novel measure of the

economy-wide level of ambiguity by using survey forecasts. Consistent with our model’s implication,

higher ambiguity levels forecast higher market premia on a broad set of assets, including equities,

4Other studies attempting to reconcile the credit spread puzzle include David (2008), Elkamhi et al. (2011),
McQuade (2012), Albagli et al. (2013), and Chen et al. (2013). These models either are not set in general equilibrium
or do not consider equity premium.

5The key ingredient in their models is the market price of risk (Sharpe ratio) that varies with macroeconomic
conditions. Huang and Huang (2012) advise caution when linking the credit spread puzzle to the recession risk,
since “there is no clear evidence yet that corporate bond defaults, especially on investment-grade bonds, are strongly
correlated with business cycles.”
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corporate bonds and Treasury bonds. This predictability is significant in both in-sample inference

and out-of-sample analysis. Based on this ambiguity measure, the price-dividend ratio backed

out from the model shows a 75% correlation with its historical counterpart. And the correlation

between model and actual credit spreads is even higher than 82%. The model-implied time-series

capture the cyclical fluctuations in their historical counterparts, and track them well within each

business cycle, offering strong support for the uncertainty channels highlighted in this paper.

This paper also contributes to a growing body of literature that studies representative-agent

asset pricing in the presence of Knightian uncertainty. Our modeling of ambiguity aversion builds

on recursive multiple-priors utility introduced and axiomatized by Epstein and Wang (1994), Chen

and Epstein (2002), and Epstein and Schneider (2003).6 In the context of these analyses, our

specification of time-varying ambiguity can be interpreted as a reduced form of models of learning

under ambiguity, as developed in Epstein and Schneider (2007, 2008), Leippold, Trojani, and Vanini

(2008) and Illeditsch (2011), and our results provide further guidance to future works on modeling

learning. While these studies focus on model implications for the equity market, the multiple-priors

preferences also are applied to other asset classes (Gagliardini et al., 2009; Ilut, 2012). However,

the linkage of ambiguity aversion to the credit spread puzzle has not yet been examined in the

literature.7

Employing a different approach to ambiguity modeling,8 Drechsler (2013) also studies the im-

plications of time-varying ambiguity for asset pricing.9 Dreschler’s approach and ours differ in

three areas. First, Drechsler (2013)’s model also features a predictable (long-run) component and

stochastic volatility in consumption growth, and he incorporates large jumps in these two driving

state process. Our model, in contrast, shuts down other risk channels to highlight the role of

time-varying ambiguity and to keep the model parsimonious. Second, Drechsler (2013) specifies an

exogenous dividend process and treats equity as an unlevered claim to the dividend. Our model

6Other preference models that describe ambiguity-averse behavior include the “smooth ambiguity” preferences
(Klibanoff et al., 2005, 2009) and the multiplier preferences, which is based on the robust control theory (Hansen
and Sargent, 2001; Anderson et al., 2003; Strzalecki, 2011). Epstein and Schneider (2010) provides a comprehensive
review.

7Boyarchenko (2012) uses the robust control model to explain the CDS spreads during the subprime mortgage
crisis but not the credit spread puzzle.

8Drechsler adopts the framework of robust control and defines the ambiguity level in terms of relative entropy.
Epstein and Schneider (2003) draws a head-to-head comparison between the robust control and recursive multiple-
priors models. What most distinguishes these modeling approaches is the updating rules imposed for the set of
priors. To ensure dynamic consistency, for example, Dreschler’s construction of multiplier preferences implies a form
of axiom that differs from the rectangularity employed by multiple-priors models.

9Ilut and Schneider (2014) incorporate time-varying ambiguity into a business cycle model where agents regard
neutral technological changes as ambiguous. Ulrich (2013) considers time-varying inflation ambiguity and its impli-
cations for the term structure of Treasury yields.
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considers a levered firm in order to explain the credit spread puzzle. Third, while Drechsler (2013)

targets properties of option prices and the variance premium, our focus is stylized facts in the

equity and corporate bond markets.

The remainder of our paper is organized as follows. Section 2 describes how we measure the

economy-level ambiguity, and it illustrates the empirical relevance of the proposed ambiguity mea-

sure. In Section 3, we introduce the model and characterize the valuation of different assets in

equilibrium. Section 4 outlines the model estimation and discusses quantitative implications on

asset pricing puzzles. Section 5 presents our conclusions.

2 Empirical Evidence

2.1 Measuring the Level of Knightian Uncertainty

Before proceeding to our model, we first present empirical evidence of the effect of time-varying

ambiguity on asset premia. We accomplish this by creating a proxy for economy-wide Knightian

uncertainty. In our model, the level of ambiguity is captured by the “distance” between the most

optimistic and the most pessimistic outlooks on economic growth. Accordingly, our empirical proxy

is constructed as the cross-sectional range of professional forecasts of next quarter’s real output

growth. The underlying assumption is that the representative agent aggregates and synthesizes

survey forecasts to form her own belief set. Consequently, the more widely dispersed opinions are

from survey participants, the lower confidence she has in probability assessments of the future.

The data source used in this study is Blue Chip Financial Forecasts, which conducts monthly

surveys that ask approximately 45 financial market professionals for their projections of a set

of economic fundamentals covering real, nominal and monetary variables.10 Within this survey,

which is published monthly, forecasts are always made for a specific calendar quarter. To prevent

the forecast horizon from varying over time, we sample individual forecasts at a quarterly frequency.

For example, forecasts of GDP growth in the second quarter are extracted from the April release,

which comes out on April 1. Dictated by the availability of forecasts of real GDP (GNP) growth,

the sample period for the rest of this article is from 1985Q1 to 2010Q4.

In practice, the range of survey forecasts, like other non-robust statistic, could be unduly affected

by outlier responses. For example, since 2002 Genetski.com has consistently made predictions of

GDP growth about 1% higher than any other respondents, until it stopped participating in the

10More details on this survey and its comparison to an alternative source, Survey of Professional Forecasters (SPF),
are discussed in Appendix A.1. The advantages of Blue Chip over SPF are also discussed in, e.g., Buraschi and Whelan
(2012). To the best of our knowledge, the current study is the first to infer the ambiguity level using the Blue Chip
data.
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survey in October, 2004. Including this single data point would increase our ambiguity measure

by at least 1%. To minimize the impact of such outliers, we employ in our analysis the interval

between the 90th percentile point and the 10th percentile point of each cross section11

Ãt = F̂−1
t (0.9)− F̂−1

t (0.1),

where F̂t(x) denotes the time-t empirical distribution of individual forecasts. The use of this

“interdecile” range12 is conceptually consistent with the multiple priors utility; it is unlikely that

the agent simply pools experts’ opinions without analysis when developing her set of priors. As

discussed in Gajdos et al. (2008), the subjective belief set should be distinguished from the set of

all logically possible priors, which contains those outliers.

Ãt is plotted as the dashed blue line in Figure 1.13 We find that it exhibits substantial temporal

variation, ranging from 3.8% in the early 1990s recession to about 1.5% during most years under

the Clinton Administration. Moreover, taking together with the business cycle, its time-variation

seems too systematic to be attributed to pure sampling errors.

Given the dynamics of Ãt, it seems that the assumption of a constant ambiguity level stems from

model tractability rather than from empirical plausibility. So why does the level of ambiguity vary

over time? An obvious answer is learning. With the multiple-prior utility structure, time-invariant

ambiguity points to the constancy of the priors’ set, which in turn indicates the lack of learning

from data (Chen and Epstein, 2002). In contrast, models with time-varying ambiguity admit the

possibility that this set actively responds to updates of information. For example, an increase in

investors’ confidence in their probability assessment could be the product of better information

quality.

Figure 1 provides visual evidence for the co-movement of aggregate ambiguity with corporate

default frequency and the price-dividend ratio on the CRSP Value-Weighted Market Index. The

red line presents annual issuer-weighted default rates as reported in Ou et al. (2011). As noted

by Chen (2010) and Bhamra et al. (2010), we can observe significant countercyclical fluctuations

in the default rates, which tend to rise before contractions and peak at the troughs of recessions.

11Before 1990, each release of Blue Chip survey contains two statistics named “TOP10” and “BOT10”, respectively.
They represented not the 90th and 10th percentile points but the average values among top-10 and bottom-10
predictions.

12A contemporaneous and independent study by Ilut and Schneider (2014) uses the interdecile range of real GDP
forecasts, constructed from the SPF data, to infer the confidence about TFP. In an early version of their paper, the
interquartile range is used as the ambiguity measure. This statistic is defined as the difference between the upper
and lower quartiles. Drechsler (2013) proxies the ambiguity level by the standard deviation of SPF forecasts, which

is consistent with his entropy-based formulation of the agent’s belief set. In Appendix A.2, Ãt is compared with
alternative ambiguity measures.

13In Figure 1, Ãt is sampled annually to match the frequency of corporate default rates.
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However, a closer inspection also reveals that the two lines closely correspond to each other even

within business cycles. These remarks apply equally to the price-dividend ratio, represented by

the green line with the corresponding y-axis on the right side. While its procyclical variation has

been documented extensively, the figure shows that it (negatively) covaries with the ambiguity

measure at a frequency higher than the business cycle. Indeed, their correlation is measured at

-73.5%, which is much more remarkable than the correlations of the P/D ratio with real output and

consumption growth (12% & 21%). Overall, Knightian uncertainty seems to capture both the inter-

and intra-cycle variations in default probabilities and in stock prices. This result suggests that it

could play an important role in driving the equity premia and credit spreads — a proposition that

is substantiated in the following section.

2.2 Predictability of Asset Returns & Credit Spreads

Having demonstrated that there is historical variation in the ambiguity level, our goal in this

subsection is to establish whether the proposed measure has explanatory power for the market

premia on a number of assets. To this end, we first examine its significance as a predictor of excess

stock returns

rMt+1 = constant + bÃt + εt,

where rMt+1 is defined as the difference between the quarterly return on the CRSP value-weighted

portfolio and the corresponding three-month T-bill rate. Since Ãt is constructed from three-month-

ahead forecasts made at the beginning of each quarter, the economists’ forecast horizon matches

that of our predictive regression. This specification maps exactly to the concept of one-period-ahead

conditionals.

The second row of Table 1 reports the regression estimates. Since the quarterly regression

involves non-overlapping observations, t-statistics in parentheses are simply based on Newey-West

standard errors adjusted for six lags of moving average residuals. We find that the ambiguity

measure has significant predictive ability for excess market returns, with adjusted R2 equal to

4.3%. Higher levels of ambiguity are associated with higher equity returns, implying that Knightian

Uncertainty is priced. Moreover, the magnitude of its impact is sizable as well: a one-standard-

deviation (0.75%) increase in Ãt raises the expected quarterly return by 2.18%.

To further pin down the role of ambiguity in pricing corporate securities, we estimate the

following predictive regressions of credit spreads for various rating classes

CSt+1 = constant + bÃt + εt,
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where CSt+1 is the quarter-end yield spreads between Barclays (Lehman) US corporate bond and

Treasury bond indices. The next six rows of Table 1 contains the results of forecasting yield spreads

of Aaa- to B-rated bonds. All regression coefficients are significant at the 5% level, and Ãt seems

to have stronger predictive power for speculative-grade bonds. The latter is not surprising, as

ambiguity only affects the “pure” credit component in yield spreads, which accounts for a greater

fraction in those lower rating categories (Huang and Huang, 2012; Avramov et al., 2007; Rossi,

2009).

The predictive content of Ãt is not limited to corporate securities. Table 1 also presents the

performance of Ãt in forecasting three-month excess returns on Treasury bonds portfolios. Results

in the last two rows show that time-varying ambiguity explains a significant fraction of the variations

in both intermediate-term and long-term bond returns.Again, the coefficient estimates are positive,

indicating that in an ambiguous environment premia tend to be higher.14

To reinforce the common predictor conclusion, we perform an out-of-sample analysis based on

two metrics. We employ, first, the out-of-sample R-squared proposed by Campbell and Thompson

(2008), and, second, the approximately normal test statistics developed in Clark and West (2007).

Both statistics are standard in the literature of return predictability (Jones and Tuzel, 2013; Bakshi

et al., 2012). In keeping with these studies, we choose a 10-year initialization period to “train”

predictive regression models. Then we evaluate the predictive power of Ãt by comparing it to

the historical average of the predicted variable. In other words, in both exercises we estimate the

benchmark regression using the mean of all return/spread observations up to and including time-t.

Out-of-sample R2s reported in Table 1 are uniformly positive, suggesting that the use of Ãt

as the predictor leads to a lower mean squared forecast error. Among different asset classes, the

premia on corporate bonds appear subject to highest predictability, as in-sample results reveal.

The p-values from the Clark-West tests are presented in the last column.15 They confirm the

effectiveness of Ãt as a real-time predictor. The only exception is long-term Treasury bonds, for

which the ambiguity measure is significant only if the test’s size is set at 10%. Otherwise, none

of the Clark-West p-values exceeds 0.04. Generally, we find that Ãt’s in-sample significance is

translated into the out-of-sample context.

14The model presented in the next section implies that the risk premia on real bonds are low when the ambiguity
level is high. If we introduce a positive correlation between innovations in ambiguity and in expected inflation, as
exists in the data, the model generates a positive effect of ambiguity on nominal bond risk premia.

15As Clark and West (2007) show, both theoretically and numerically, their test statistic is approximately normal
after adjusting for the estimation error of the larger model. Thus, we only report the p-values.
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3 Model Setup

3.1 Modeling Ambiguity Aversion

Given the empirical evidence on return predictability, this section theorizes about the relationship

between time-varying ambiguity and asset premia. Consider a measurable state space (Ω,F ) where

each Ft ∈ F can be identified with a partition of Ω. Given a probability measure P , Ft is the

σ-field generated by a d-dimensional Brownian motion Bt defined on (Ω,F , P ). Suppose that the

representative decision-maker does not know the true probability measure P0 and ranks uncertain

consumption streams C = {Ct}∞t=0, where Ct: Ω → R is Ft-measurable. To model preferences in

the presence of uncertainty, we adopt the structure of recursive multiple priors

V ∗t = min
P∈PΘ

EP

[∫ ∞
t

f(Cs, V
P
s )ds | Ft

]
(1)

where the set P of priors on (Ω,F ) is constructed by means of Girsanov transformation. In

particular, we can define the Radon-Nikodỳm derivative (Z) of P with respect to the reference

measure P0 through a density generator (ϑt)

dZϑt = −Zϑt ϑtdBt, 2 Zϑ0 = 1 (2)

Zϑt = exp

{
−1

2

∫ t

0
|ϑs|2ds−

∫ t

0
ϑsdBt

}
, (3)

where Bt is a Brownian motion under P0. It follows that the generated measure P ϑ(ω) = Z(ω)P0(ω)

is equivalent to P0.

This continuous-time multiple-priors model (1)–(3) is proposed by Chen and Epstein (2002),

who prove the existence and uniqueness of the solution to Eq. (1). The multiple-priors functional

form is introduced by Gilboa and Schmeidler (1989) to account for the Ellsberg-type behavior;

Epstein and Wang (1994) put forth the recursive version, and Epstein and Schneider (2003) lay its

axiomatic foundations. Faced with a multiplicity of approaches to modeling ambiguity, our focus is

multiple-priors preferences, which has a well-established framework in continuous time. Strzalecki

(2013) shows that the recursive multiple-priors utility, per se, is neutral about the timing of the

resolution of uncertainty. This feature allows ambiguity aversion to vary independently without

affecting the agent’s temporal attitudes, which can be modeled separately using the Kreps-Porteus

preferences.

In a pure diffusion environment, ambiguity concerns whether Bt is a Brownian motion.16 In

15We assume that the regularity conditions, as specified in the Appendix D of Duffie (2001), are satisfied so that
Zϑt is a martingale under P0.

16Liu et al. (2005) and Drechsler (2013) consider agents who exhibit ambiguity aversion towards jumps in the level
or in the expected (long-run) component of consumption growth.
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other words, a change of measure from P0 to P ∈ P affects only the drift function of the utility

continuation process. To be more precise, the Martingale Representation Theorem implies that

the utility process under P0 can be written as the solution to the backward stochastic differential

equation (Duffie and Epstein, 1992)

dV P0
t = −f(Ct, V

P0
t )dt+ σv,tdBt. (4)

Similarly, for the utility process defined under P ϑ ∈ P, we can employ the Girsanov Theorem to

express it in terms of Bt

dV Pϑ

t =
[
−f(Ct, V

Pϑ

t ) + ϑtσv,t

]
dt+ σv,tdBt. (5)

With the multiple-priors utility, the decision-maker’s acts reflect her worst-case belief. Therefore,

it is natural to guess

dV ∗t =

[
−f(Ct, V

P ∗
t ) + max

ϑ∈Θ
ϑtσv,t

]
dt+ σv,tdBt. (6)

Chen and Epstein (2002) confirm this conjecture and prove the uniqueness of the solution to Eq. (6).

Under Duffie and Epstein (1992)’s parameterizations of recursive preference, the aggregator

function f takes the form

f(C, V ) = βθV

( C

((1− γ)V )
1

1−γ

)1− 1
ψ

− 1

 (7)

where β > 0 is the rate of time preference, γ 6= 1 is the coefficient of relative risk aversion (RRA),

and ψ 6= 1 is the elasticity of intertemporal substitution (EIS). For notational convenience we set

θ = (1 − γ)/(1 − 1
ψ ). Eq. (7) can be regarded as the continuous-time version of Kreps-Porteus

functional form; the normalized utility index V is obtained through an increasing transformation

of the initial one parameterized by Epstein and Zin (1989). It follows that the stochastic control

problem is to find an optimal consumption strategy c∗ to maximize Eq. (1)

Jt = max
C∈A

min
P∈PΘ

EP

[∫ ∞
t

f(Cs, V
P
s )ds | Ft

]
(8)

where C ∈ A denotes that the control process {Ct} is admissible. Market clearing implies that the

representative agent takes up the aggregate consumption, i.e. c∗t = Ct.

To illustrate the effect of time-varying ambiguity on asset pricing, we consider a highly stylized

model for the driving process. The dynamics of consumption growth is specified as

dCt
Ct

= µc,tdt+ σcdBC,t, (9)

10



where the sequence {µc,t} are unknown to the representative agent. Rather, at time t she has a set

of beliefs which can be parameterized as

µP
c,t ∈ [µc −At, µc +At], At ≥ 0

where At captures the level of ambiguity about the expected growth rates. For the sake of simplicity,

we assume that the drift component in the reference model is simply µc. Therefore, the less

confidence the agent has in her probability assessment of the conditional mean, the wider is the

interval [−At, At]. If At ≡ 0, ambiguity vanishes and we obtain the standard subjective expected

utility setting. Note that this specification of the set of priors satisfies the rectangularity and thus

ensures dynamic consistency.17

To reflect the arrival of news about economic prospects, we allow the ambiguity level At to vary

over time

dAt = µA,tdt+ σA,tdBA,t, (10)

where BA,t is assumed to be uncorrelated with BC,t. For tractability, the drift and diffusion func-

tions are assumed to have an affine structure, which in the next subsection we will parameterize

in order to capture key properties of the survey data. As discussed in Section 2.1, evolution of ag-

gregate confidence may reflect information processing and updating by ambiguity-averse investors.

Indeed, Epstein and Schneider (2008) formally model the responsiveness of ambiguity to observa-

tions and derive important theoretical implications. For the purpose of our study, modeling the

origin of variation in ambiguity does not add significant economic insights, while it does complicate

the analysis. Hence, the exogenous structure imposed on At is to keep the model as simple as

possible while retaining the key ingredients needed to reconcile asset pricing puzzles.

3.2 Parameterizations of the Ambiguity Process

As a forcing process, the ambiguity level At is assumed to follow an affine process. In this section,

we specify the dynamics of At (a) to capture key properties of the data and (b) to ensure its

non-negativity. Referring to the proxy Ãt for aggregate ambiguity charted in Figure 1, we observe

that its level fluctuates around an average value of 2.06 percent. Indeed, Figure 1 reveals that as

investors become less confident in probability assessments, the confidence level tends to be subject

to progressively larger shocks — a pattern that implies that the ambiguity measure has time-varying

volatility and its distribution is right-skewed.

17An alternative way to construct restrictions to the prior set is through relative entropy (Sbuelz and Trojani, 2008;
Drechsler, 2013). The resulting set of density generators is nonrectangular and thus is not admissible in the recursive
multiple-prior setting (Chen and Epstein, 2002; Epstein and Schneider, 2003).
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To explore these empirical properties, we firstly perform a variance ratio test on the realized

volatility of innovations. Panel A of Table 2 displays the test results. If realized volatility were

i.i.d., the term structure of variance ratios would be flat, with magnitudes close to unity. But

in Table 2 the empirical variance ratios are all above one, and they increase uniformly with the

horizon. The bootstrap analysis indicates that the null of homoscedastic shocks is rejected at the

5% level for all horizons.

Even more prominent is the skewness of the ambiguity level. As shown in Panel B, the number

measured for our sample period is 0.82. This positive skewness is significant at the 5% confidence

level constructed by 10,000 bootstrap samples. This evidence, together with the heterogeneity

of realized volatility that is positively correlated with At, prompts a mean-reverting square-root

process

µA,t = κ(Ā−At), κ > 0;

σA,t =
√
a0 + a1At, a1 > 0.

For the diffusion term, we note that Piazzesi et al. (2007) and Yang (2011) use a similar functional

form in discrete time to model other macroeconomic series with similar properties. But because

we need to guard against the probability that At falls below zero, we restrict a0 to zero and adopt

a Cox-Ingersoll-Ross (CIR) specification

σA,t = σa
√
At.

Figure 2 shows that the density function implied by the simulated CIR process fits the empirical one

reasonably well, while a simple Ornstein–Uhlenbeck process, with σA,t = σA, is unable to capture

the right skewness.

3.3 Equilibrium Prices

In this section, we solve for the value function J by expanding the ϑ∗-expectation of future continua-

tion utility, as presented in Eq. (6). To fully exploit the analytical power afforded by the continuous

time, we note that any alternative model can be defined by a probability measure P ϑ ∈P

dCt
Ct

= (µc + at)dt+ σcdB
P
C,t,

where at ∈ [−At, At] and BP
C,t is a Brownian motion under P . In other words, the structure of the

density generator is given by ϑt = (−at/σc, 0). This specification describes the component of state

dynamics that the agent is uncertain about; there is no ambiguity about the ambiguity itself.18

18Drechsler (2013) considers an extended specification in which there is Knightian uncertainty about the dynamics
of the size of ambiguous beliefs.
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These results can be used to confirm the conjecture that the value function is increasing in

aggregate consumption. The worst-case belief P ∗ then corresponds to the density generated by

ϑ∗ = At/σc, and the stochastic control problem becomes standard.

PROPOSITION 1: With consumption and ambiguity dynamics as specified above, if L(At) solves

the following equation

(1− γ)(µc −A−
1

2
γσ2

c ) +
DALθ

Lθ
+
θ

L
− βθ = 0, γ, ψ 6= 1, (11)

where Dx is the standard Dynkin operator and it satisfies the transversality condition, then the

value function is given by

J(Ct, At) =
C

(1−γ)
t

1− γ
(βL(At))

θ, (12)

and L is the price-consumption ratio in equilibrium.

Given that the differential equation (11) does not have a close-form solution, we follow Benzoni

et al. (2005) and Chen et al. (2009) by approximating L as an exponential affine function

L(A) ≈ eη0+η1A. (13)

As shown in Appendix B, this approach provides an accurate approximation to the problem solution.

The price-consumption loading on ambiguity, η1, depends on the preference configuration. Given

a nondegenerate interval for the subjective growth mean (At > 0), η1 is negative as long as EIS

is larger than one. This corresponds to the scenario wherein the agent recoups her investment in

response to shocks that blur economic prospects. Consequently, asset prices tend to drop at times

of high subjective uncertainty.

In equilibrium, state prices are shaped by the marginal rates of substitutions of current for

future consumption. In particular, given the max-min representation (8), state prices are based

on the worst-case density Zϑ
∗
. The following proposition sheds light on how ambiguity aversion

contributes to the asset premia.

PROPOSITION 2: The real pricing kernel has dynamics

dMt

Mt
= −rtdt −Λ′tdBt

−rtdt −
(
γσc +

At
σc
, (1− θ)η1σ

2
aAt

)(
dBC,t

dBA,t

)
(14)

where rt = %0 + %1At. The expressions %0 and %1 are given in Appendix A.

In the current setup, a nondegenerate set of priors reflects the agent’s lack of confidence in

her assessment of economic growth. With this interpretation, a wider span of the set demands a
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proportional increase in the ambiguity premium on the consumption claim, given that the lack of

confidence makes the agent evaluate the asset as if the aggregate consumption grows at a rate of

µc −At. This first-order effect is captured by the At/σc term.

Furthermore, due to the separation between risk aversion and EIS, the risk from fluctuations in

the future ambiguity level earns a separate premium. Empirically, this intertemporal substitution

effect is enlarged by the inverse-leverage effect in the dynamics of At: the higher level of Knightian

uncertainty, the greater uncertainty about its future path. If the agent prefers an earlier resolution of

this uncertainty (γ > 1/ψ), shocks to At that increase its conditional volatility carry an additional

(positive) uncertainty premium. Depending on the persistence of the ambiguity process, these

shocks could cause large reactions in the marginal rate of substitution. This second risk channel is

characterized by the (1− θ)η1σ
2
aAt term in Eq. (14).

To sum up, in our model there are two ways in which time-varying ambiguity influences the

market price of uncertainty. In contrast, in models with a constant amount of ambiguity, the first-

order effect degenerates into a fixed level and the second-order effect vanishes; such models do not

allow for time-varying Sharpe ratios. Also notable, the first-order effect makes the market price of

uncertainty fall into the “essentially affine” class introduced by Duffee (2002).

The dual role time-varying ambiguity serves in equilibrium asset pricing is also reflected in its

impact on the risk-free rate. As shown in Appendix B, the loading of rt on At has the following

expression

%1 = − 1

ψ
+

1

2
(θ − 1)η2

1σ
2
a. (15)

The first term on the right hand side captures the effect of ambiguity on intertemporal smoothing.

Also persisting in the case of constant ambiguity, it underlines the fact that ambiguity about the

distribution of future payoffs is a first-order concern. However, the second term is absent in models

with either time-invariant ambiguity or constant relative risk aversion (θ = 1). That term lowers

the equilibrium interest rate if the agent has a preference for early resolution of uncertainty, as

she wants to divest from risky assets when the future level of ambiguity becomes highly uncertain.

Therefore, both effects enhance the agent’s saving motive and thus help explain the risk-free rate

puzzle.

Finally, as the proposed ambiguity measure Ã is derived from forecasts of real GDP growth,19

19The Bluechip survey does not ask participants for the forecast of real consumption expenditures. While the SPF
contains this category, the responses are not collected by type of product. Hence, forecasts of nondurables plus service
consumption (the variable typically used in model calibration) are unavailable.
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we also specify the aggregate output process Ot as

dOt
Ot

= µodt+ σo

(
σocdBC,t +

√
1− σ2

ocdBO,t

)
, (16)

where dBO,t is correlated with neither dBC,t nor dBA,t. Following Chen et al. (2009), we assume

that Ot has the same growth rate as the aggregate consumption Ct, but with different, albeit closely

correlated, dynamics. This assumption appears empirically valid: over our sample period, real GDP

and real consumption of nondurables plus services have almost identical mean growth rate (1.58%

versus 1.54%); the correlation coefficient between their innovations is measured at 63.1%.

We continue to assume that there is ambiguity only about whether BC,t is a Brownian motion.

Thus, given the set PΘ of priors as specified above, the expectation of output growth falls within

the interval
EP(dOt)

Otdt
∈
[
µo −

σoσocAt
σc

, µo +
σoσocAt
σc

]
.

It follows that the endogenous ambiguity level At is proportional to the empirical proxy defined in

the last section,

At =
Ãtσc

2σoσoc
. (17)

Indeed, (17) motivates our formation of the ambiguity measure as the range of survey forecasts

because the agent cares about the span of all subjective priors.

Thus far the correlation among innovations in state variables has not been included for parsi-

mony. Empirically, we find that a loss of confidence (in probability assessment) is bad news for

future consumption and output growth. For example, the impulse response function shows that

a one-standard-deviation shock lowers the consumption growth over the next quarter by roughly

6 basis points. In deriving quantitative implications of the model, we allow for these cross-shock

responses by incorporating σca and σoa in Eq. (9) and (16). As shown in section 4.1, estimates

of both parameters are significant at the 1% level. Expressions for the pricing kernel and risk-free

rate in presence of these correlation terms are given in Appendix B. Intuitively, a negative value of

σca magnifies the effect of Knightian uncertainty on valuation ratios.

3.4 Firm’s Capital Structure

In order to price securities issued by individual firms, we assume that the cash flows to firm j follow

the process
dδj,t
δj,t

=
dOt
Ot

+ σjdBj,t, (18)
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where Bj,t captures the firm-specific risks and σj is the idiosyncratic volatility. This CAPM-inspired

specification is inspired by the approach employed by Chen et al. (2009), Bhamra et al. (2010) and

Chen (2010).

Following the standard capital structure models, we assume that investment decisions are fixed

and exogenous for the financing policy. Our benchmark model proposes that bankruptcy costs and

differential tax treatment are the major market imperfections that affect corporate decisions. In

the future this model can be expanded to include other types of frictions, such as agency costs and

transaction (debt retirement and reissuance) costs. For tractability, we assume a stationary debt

structure where a firm continuously retires a constant fraction m of existing debt and replaces it

with the same amount (of principal) of newly issued debt. In making this assumption, we follow

the modeling approach of Leland (1994a, 1998), who shows that although no explicit maturity is

stated for the debt the average maturity is equal to 1/m.

The corporate debt outstanding is composed of coupon bonds with the total coupon payment

equal to C. At any time t, therefore, new bonds are issued at a rate f = mF , where F is

the total face value of all outstanding bonds, with the instantaneous coupon rate c = mC to

preserve the debt structure as time elapses. We further assume that the bond indenture provisions

prohibit equityholders from selling assets to pay any dividends, and maintain absolute priority for

bondholders. Hence, we may think about a situation in which the stockholders will have to make

payments to the firm to cover the interest payments. However, shareholders have the contractual

right to declare default at any time and turn the firm over to the bondholders. Upon default, the

firm incurs a total deadweight cost equal to φ(At)U
∗, where 0 < φ < 1 and U∗ is the unlevered

value of the equity at the time of default.

Finally, we assume a differential tax system: corporate earnings are taxed instantaneously at

a constant rate of τc; there is no loss-offset provision of taxes. Individual investors, however, pay

taxes on interest income at rate τi and on dividend income at rate τd, but they are not taxed on

their capital gains. It follows that the cash flows to the equity and the debt issued at time t0, when

the firm is solvent, are given by

δe,t = (1− τe)(δt − C)−mF +D(δt, At), and

δd,t = e−m(t−t0) ((1− τi)C +mF ) ,

respectively, where τe = 1 − (1 − τc)(1 − τd) is the effective tax rate and D the market price of

newly issued debt.

Given that it is in the interest of the equityholders to choose when to default in such a way
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that the value of equity is maximized, the endogenous default can be formulated as an optimal

stopping problem. Fix a domain S ⊂ R × (0,∞) for the state vector (δt, At), and define τS =

inf{t > 0; (δt, At) /∈ S}. Then the optimal default boundary is determined by finding a stopping

time τ∗(δt, At) such that

E(δt, At) = EQt

[∫ τ∗

t
e−

∫ s
t ruduδe,sds

]
= sup

τ∈T
EQt

[∫ τ

t
e−

∫ s
t ruduδe,sds

]
where T is the set of all stopping times τ < τS . In the language of optimal stopping problems, δe,t

is the “utility rate” function and the “bequest” function is zero since equityholders receive nothing

at default.

In practice, this type of free-boundary problem is usually solved by verifying that a given

candidate function e actually coincides with E and that a corresponding stopping time τB is opti-

mal. Derived from the variational inequality verification theorem proved in Øksendal (2003), the

following proposition shapes the solution for the maximized equity value.

PROPOSITION 3: Suppose we can find a function e : S̄ → R such that e ∈ C1(S)
⋂
C(S̄) and

e ≥ 0 on S. Define

B = {(δt, At) ∈ S; e(δt, At) > 0},

as the continuation region.

(a) Suppose ∂B is a Lipschitz surface. If

(i) (δt, At) spends zero time at ∂B, i.e. EQt
[∫ τS
t X∂D(δt, At)ds

]
= 0,

(ii) e ∈ C2(S\∂B) with locally bounded derivatives near ∂B,

(iii) De(δt, At) + δe − r(At)e(δt, At) ≤ 0 on S\∂B,

then e(δt, At) ≥ E(δt, At) for all (δt, At) ∈ S.

(b) Moreover, assume

(iv) De(δt, At) + δe − r(At)e(δt, At) = 0 on B,

(v) τB = inf{t > 0; (δt, At) /∈ D} <∞ for all (δt, At) ∈ S,

(vi) the family {e(δτ , Aτ ); τ ∈ T , τ ≤ τB} is uniformly integrable, for all (δt, At) ∈ S.

Then e(δτ , Aτ ) = E(δτ , Aτ ) and τ∗ = τB is an optimal default time.

(c) Define U = {(δt, At) ∈ S; δe,t > 0}. Suppose that for all (δt, At) ∈ U there exists a neigh-

borhood W of (δt, At) such that τW = inf{t > 0; (δt, At) /∈ W} < ∞. Then U ⊂ {(δt, At) ∈

S; e(δt, At) > 0} = B. Therefore it is never optimal to default while (δt, At) ∈ U .
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These results are deduced from the “high contact principle” (Brekke and Øksendal, 1991), which

has been fruitfully applied in optimal stopping and stochastic waves. To find a reasonable guess for

the continuation region B, we refer to Proposition 3(c). In view of the expression for δe,t, which is

a non-decreasing function of δt, we conjecture that B has the form B = {(δt, At); δt > δ∗(At)} such

that U ⊆ B.20 In other words, inspired by Goldstein et al. (2001) and Strebulaev (2007), we define

the default time in terms of corporate earnings. Therefore, the optimal strategy of shareholders is

to find out the critical default barrier δ∗ that depends on the current level of ambiguity.

Proposition 3 characterizes the maximized equity value by the partial differential equation (PDE)

listed in (iv). The relevant boundary conditions derive from its C1-property. The continuity condi-

tion implies that

E(δ∗(A), A) = 0. (19)

Moreover, to ensure differentiability,21 it is further required that

lim
δ→δ∗

Eδ = lim
δ→δ∗

EA = 0. (20)

The market value of newly issued debt D, on the other hand, satisfies the PDE

DD(δ, A) + (1− τi)mC +m2F − (r(A) +m)D(δ, A) = 0,

lim
δ→δ∗

D(δ, A) = (1− φ)mU(δ∗(A), A), (21)

lim
δ→∞

D(δ, A) = ((1− τi)mC +m2F )PV r+m(A), (22)

lim
δ→∞

Dδ(δ, A) = 0, (23)

where PV is the expected present value operator

PV q(xt) = EQt

[∫ ∞
t

e−
∫ s
t (q(xu)du)ds

]
.

The upper boundary conditions (22) and (23) imply that when the firm’s payoff grows to infinity,

the possibility of default becomes meaningless, so that the debt value tends towards to the price of

a default-free claim to the continuous cash flow (1 − τi)mC + m2F . U(δt, At) in Eq. (21) denotes

the value of unlevered assets that can be written as

U(δt, At) = δtL
o(At),

where Lo(At) is the price-earning ratio. Given the affine model structure, both PV r(A) and Lo(At)

would be solved with a log-linear approximation

Lo(A) ≈ eξ0+ξ1A, (24)

PV r(A) ≈ eζ0+ζ1A. (25)

20This conjecture is easily verified using the results established in Mordecki (2002) for a general Lévy process.
21While the continuous pasting condition (19) is necessary, the smooth pasting condition (20) need not hold in

general, although it holds in the optimal default problem. See Alili and Kyprianou (2005) for a detailed discussion.
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The details are described in Appendix B.

The free boundary problem as characterized above resembles the one confronted in pricing

American options. For our pricing model where the risk-free rate and asset volatility are time-

varying and dependent on the ambiguity level, two numerical approaches might be relevant: the

short-maturity asymptotic approximation (Lamberton and Villeneuve, 2003; Chevalier, 2005; Lev-

endorskii, 2008), and the simulation-based method proposed in Longstaff and Schwartz (2001).

But neither approach is applicable here because there is no such expiration date in the current

debt structure. For this reason, we perform a regular perturbation analysis to solve for the prices

of levered equity and corporate bond.22 Specifically, we utilize the persistence in the ambiguity

process, which is confirmed by our model estimation in Section 4, by adding a small time-scale

parameter ε to its dynamics

dAt = εκA(Ā−At)dt+ σa
√
εAtdBA,t. (26)

The small magnitude of ε captures the slow mean-reversion in At and makes possible the following

expansion with respect to asset prices

E = E0 +
√
εE1 + εE2 +O(ε

3
2 ), (27)

D = D0 +
√
εD1 + εD2 +O(ε

3
2 ), (28)

where the expansion series solve a series of ordinary differential equations, as presented in Appendix

C. These asymptotic approximations can be viewed as an extension of the slow variation asymp-

totics (Sircar and Papanicolaou, 1999; Lee, 2001) to optimal stopping-time problems (Fouque et al.,

2001).

To obtain economic insights from this approximate analytic solution, we focus on the leading-

order terms, which essentially solve a reduced, one-dimensional free boundary problem. As might be

expected, D0 and E0 in (27)-(28) are a variant of Leland (1994a)’s pricing formula with ambiguity

22This approach is also used by McQuade (2012), who proposes a resolution of the credit spread puzzle as well,
by incorporating stochastic volatility into structural modeling. Yet in contrast to McQuade (2012), who draws a
distinction between growth and value firms and aims to provide cross-sectional implications for market and book
values of firms’ equity, we attempt to derive the effects of time-varying ambiguity on the prices of various asset
classes in a general equilibrium model.
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fixed at the current level

D0 = ((1− τi)mC +m2F )eζ
m
0 +ζm1 A

(
1−

(
δ

δ∗0(A)

)αr+m)
+

m(1− φ)δ∗0(A)eξ0+ξ1A

(
δ

δ∗0(A)

)αr+m
, (29)

E0 = (1− τe)δeξ0+ξ1A + (τe − τi)Ceζ0+ζ1A

(
1−

(
δ

δ∗0(A)

)αr)
−

φδ∗0(A)eξ0+ξ1A

(
δ

δ∗0(A)

)αr
− D0(δ, A)

m
. (30)

where the expressions for αr+m and αr are given in Appendix C. δ∗0 is the leading-order term in an

according asymptotic expansion of the optimal default boundary

δ∗ = δ∗0 +
√
εδ∗1 + εδ∗2 +O(ε

3
2 ). (31)

Following standard practices, we price newly issued debt as the present value of coupon payments

before default (the first line of Eq. (29)), and recovered firm’s value at default (the second line).

On the other hand, the value of levered equity is equal to the firm’s value minus the total debt

value, which can be shown as equal to 1/m times the value of new debt. The value of a levered

firm in turn consists of the sum of the after-tax value of unlevered assets, the tax benefit and

the potential bankruptcy cost, as reflected by the first three terms on the right-hand side of (30)

respectively. The first term is usually interpreted as the value of equity before any debt is issued.23

The second term depends on the level of tax shelter (τe − τi)C. However, tax benefits cannot be

claimed after default. Therefore, their current value is equal to the product of the tax-sheltering

value of coupon payments and the probability of solvency. Finally, the last term in (30) derives

from the reorganization costs upon bankruptcy, φU(δ∗, A). The present value of bankruptcy cost

is obtained by multiplying this term by the risk-neutral default probability.

As indicated by Eq. (29) and (30), the leading-order prices are equivalent to an application to

credit risk modeling of the κ-ignorance specification (Chen and Epstein, 2002), where the ambiguity

premium is time-invariant. This is true because of the persistence in the At process that makes

the agent attach great importance to its current level rather than its long-run mean. This explains

why Ā does not appear in the pricing formula for the primary-order terms. For the same reason,

the agent would show large reaction to changes in the ambiguity level, which are perceived as being

long-lasting. This high ambiguity elasticity of asset prices helps explain the large equity premium.

23In the EBIT-based framework there does not exist any all-equity firm. Rather, the value of a debtless firm is
divided between equity and government, with the portions determined by the effective tax rate.
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To illustrate this point, we present the expression for the uncertainty premium on unlevered equity

1

dt
Et

[
dU((1− τe)δt, At)
U((1− τe)δt, At)

]
− rt +

(1− τe)δt
U((1− τe)δt, At)

= γσcσoσoc + (1− θ)η1ξ1σ
2
aAt +

σoσoc
σc

At + (32)

[(ξ1 + σoa)γσca + (1− θ)η1σoa]σ
2
aAt. (33)

The first term in (32) is standard in the constant relative risk aversion (CRRA) case. The second

term represents risk compensation for the uncertainty in the future level of ambiguity; it is positive

if the agent has a preference for early resolution of uncertainty (γ > 1/ψ) and the EIS is greater

than one. As noted above, an increase in the permanence κA of the ambiguity process would raise

the absolute values of η1 and ξ1, and thus would result in greater magnitude of the second term.

While the equity premium in long-run risk models also contains an component akin to the

second term in (32), the third term here is unique to ambiguity aversion models. This ambiguity

premium component captures the fact that Knightian uncertainty about the distribution of future

payoffs is a first-order concern. Therefore, the ambiguity level could have large impact on equity

premium even if it is not as volatile as the cash flow process. It is also worth noting that (32)

encompasses the κ-ignorance case, wherein the second term vanishes and the ambiguity premium

term becomes constant. Finally, (33) reflects the conditional correlation between the aggregate

consumption / output and the amount of ambiguity.

As to the uncertainty premium on corporate debt, note that δ∗0 in Eq. (29) and (30) has the

following solution

δ∗0 =
((1− τi)C +mF )αr+me

ζm0 +ζm1 A − (τe − τi)Cαreζ0+ζ1A

φαr + (1− φ)αr+m − 1
e−ξ0−ξ1A (34)

Again Eq. (34) depends only on the current value of At rather than its historical mean. If the

response of price-earning ratio to the amount of ambiguity is negative (ξ1 < 0), δ∗0 is an increas-

ing function of A. The equation indicates that equityholders prefer earlier default when growth

prospects are highly uncertain. The resulting positive covariation between the default boundary

and the market price of ambiguity makes default events cluster exactly when the marginal rate of

substitution is high. Hence, the agent demands a higher premium on corporate bonds than would

be the case were there a constant default barrier. As to other determinants, higher marginal benefit

of tax (τe−τi)C, or lower fractional bankruptcy costs φ, lead to an increase in the default boundary.
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4 Model Implications

In this section, to illustrate the quantitative impact of time-varying ambiguity on asset prices we

assess the model’s empirical performance. We start with a formal estimation of the state space.

Section 4.2 considers the model’s ability to reconcile the credit spread puzzle with a reasonable

firm-level calibration. In Section 4.3, we investigate whether the model can match some key mo-

ments of levered equity premium and risk-free rate. The last subsection examines the the model’s

implications for the dynamics of asset prices.

4.1 Data and Estimation

A major obstacle to the estimation of equilibrium asset pricing models is that the key state variable,

e.g. the surplus consumption ratio or the long-run component in consumption growth, tends to be

unobservable.24 Advantageously, this model features a fully measurable state vector. Therefore,

we obtain model parameters through a maximum likelihood estimation (MLE) of the state process,

while leaving the choices of preference parameters similar to the existing studies.Specifically, we

consider the state vector Yt = {ct, ot, Ãt}, where the dynamics of Ãt can be easily derived from

Eq. (17) via Itô’s lemma.

Following the convention in the literature, Ct is measured as the sum of real personal consump-

tion expenditures (PCE) on nondurable goods and services, and Ot as real GDP per capita. Both

data series are retrieved from the U.S. national accounts of Bureau of Economic Analysis and are

seasonally adjusted.25 The estimation frequency is quarterly and the sample period is 1985 to 2010.

Given the specification of Yt’s dynamics, one cannot extract its conditional density in closed

form. In principle, the likelihood function can be estimated by Monte Carlo simulation methods.

However, this approach is computationally intensive for our model because the simulation has to

be performed for every conditioning variable and for every parameter value. Instead, we apply the

approximate MLE developed by Aı̈t-Sahalia (1999, 2002, 2008), who constructs explicit expansions

for the log-likelihood function of a large class of univariate and multivariate diffusion processes.

Given that Yt is an irreducible process, as defined in Aı̈t-Sahalia (2008), each term in the expansion

series needs to be solved from Kolmogorov forward and backward equations. To obtain an analytic

expression for these terms, we follow Aı̈t-Sahalia’s procedure for approximating the likelihood

24In that case, econometricians usually consider a dynamic system with both state equations and observation
equations. Under this estimation scheme, asset prices are involved in developing the observation equations, and
estimates of preference parameters can also be obtained.

25Participants in Blue Chip surveys are asked to provide forecasts of seasonally adjusted, and annualized growth
rates of real GDP.
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function two-dimensionally: in the time interval ∆ = 1/4 and in the state variable Yt+∆ − Yt.

The estimation results are presented in Table 3. A most remarkable aspect of parameter esti-

mates pertains the persistence of the ambiguity level. The mean-reversion rate is estimated at 0.30,

corresponding a mean return time of more than 3 years. The unconditional expectation of ambigu-

ity Ā is about 1.11%. This quantity, when combined with estimates of σc, σo and σoc, implies that

the proposed measure Ãt has a long-run mean of 2.09%, which matches almost exactly the average

value observed from the survey data. As expected, innovations in aggregate consumption and in

the ambiguity level are negatively correlated.

The preference parameters reported in Table 3 are chosen to take into account the empirical

evidence and economic considerations. The time discount factor β in the stochastic differential

utility is usually calibrated at somewhere between 0.01 and 0.02.26 Taking an intermediate value

in this range, we fix β at 0.015. We further assume that the RRA coefficient γ is equal to 10, as

do Bansal and Yaron (2004). The question of whether the magnitude of the EIS is greater than

one is controversial. We set its value to Bansal and Shaliastovich (2013)’s estimate of 1.81, which

they derive from bond market data as well as survey forecasts. Jeong et al. (2015), who address

the issue of the sensitivity of this estimate to the inclusion of ambiguity aversion, estimate EIS

based on the utility structure that we employ in our study. Jeong et al. (2015)’s estimate, too, is

generally higher than one, but it is accompanied with large standard errors.

4.2 The Credit Spread Puzzle

In a step towards developing a unified understanding of how time-varying ambiguity affects the

pricing of equities and corporate bonds, this section examines the model’s implications for the

levels and dynamics of credit spreads. As discussed by Chen et al. (2009), this exercise can be

viewed as “an out-of-sample test” of potential solutions to the equity premium puzzle. Using

calibration methodologies commonly employed in the literature, we choose firm-level parameters to

match the average solvency ratios of firms in different rating categories. However, in this calibration

experiment, historical default rates are not targets towards which we calibrate the model; instead

they serve as criteria used to assess the model performance. This procedure to generate endogenous

default probabilities is consistent with Bhamra et al. (2010) and Chen (2010).

26It is calibrated at 0.01 by Bhamra et al. (2010), at 0.015 by Chen (2010), at 0.0176 by Benzoni et al. (2011) and
at 0.02 by Wachter (2013).
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4.2.1 Firm-Level Calibration

A key variable in the valuation of default claims is the cost of default φ. Given that the default

timing and default boundary are endogenous in our model, the default loss, too, should be modeled

to allow for covariation with the state of the economy. As would be illustrated in Section 4.2.3,

our model indicates that the default timing tends to be positively correlated with the degree of

ambiguity. It follows that financial distress would be enormously costly when prospects for economic

growth are highly unclear (Shleifer and Vishny, 1992). Given this insight, we parameterize the

default cost as a linear function of the ambiguity level

φt = b0 + b1At.

To obtain empirical estimates of b0 and b1, we follow Davydenko, Strebulaev, and Zhao (2012),

who estimate φ from the market values of defaulted firms. To simplify their estimation procedure,

we slightly modify two of its steps. Firstly, the market prices of bank loans are estimated as a linear-

quadratic function of bond prices, as described in their appendix. Davydenko et al. (2012, DSW

hereafter) find that this specification can explain more than 75% of variations in bank debt prices

available in their dataset. Secondly, we assume that the jump-to-default risk premium, defined

as the ratio of risk-neutral intensity to actual default intensity, is constant over time. Its value is

set at 2.31, which is the empirical estimate reported by Driessen (2005).27 DSW find that their

estimates are fairly insensitive to the assumption of this risk premium factor, whether it is specified

as time-varying or fixed. Our estimates indicate that the mean cost for all corporate defaults in

our sample is 24.7%, consistent with DSW’s result. By regressing these estimates on the ambiguity

measure, we obtain the following results

φj,t = 0.113 + 6.294 Ãt.

(6.61) (5.28)

The effect of ambiguity on the default cost is statistically significant and economically substantial.

The slope coefficient implies that a one-percent increase in At pushes up the proportional cost by

11.8%, which constitutes our estimate of b1.

Table 4 summarizes several calibrated firm-level parameters in addition to b0 and b1. Parameters

on tax rates are set to be consistent with Chen (2010)’s calibration, as reported in Panel A. Panel

B shows calibration targets that enable the model to generate differential default rates across credit

27Similar results are presented in Berndt et al. (2005), who estimate the jump-risk premium from the data on credit
default swaps.
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ratings. Like Huang and Huang (2012), we study the following ratings by Moody’s: Aaa, Aa, A,

Baa, Ba, and B. In most studies in the literature, the leverage ratio is used as the proxy for firms’

financial health. In a departure from these studies, our model defines default time in terms of a

firms cash flow rather than its value. For this reason, we directly calibrate the debt structure to

earning-based financial metrics; that is, we match the initial proportion of F to δ0 to the historical

debt-earning ratio for each rating category — a practice advocated by Chen (2010), who argues

for the use of non-market-based financial ratios in testing the implications of structural models.

Employing the same principle, we calibrate the parameter σj such that the model matches firms

earning volatilities rather than their asset volatilities.

The distribution of solvency ratios across rating groups is retrieved from the special report of

Moody’s Financial Metrics. It indicates that these ratios, besides the conventional leverage ratio,

do receive serious consideration in rating agencies’ analytical process. Indeed, it is emphasized

in the report that “when Moody’s does analyze financial ratios, it uses a multivariate approach.”

The quantities in the second row of Panel B are the median debt-EBITDA ratios, and are strictly

monotonic with ratings. In the third row, the volatility of net revenue is used as a proxy for the

earning volatility. An implicit assumption underlying this practice is that the EBITDA margin is

constant and thus the revenue and EBITDA have the same growth rate. The level of risk shows

a weak relationship to ratings. For instance, the idiosyncratic volatility for Aaa issuers is 9.7%,

higher than the 8.5% for Aa issuers.

With values of F and σj determined for each credit rating, we solve for the total coupon payment

C by following Leland (1994a)’s procedure. That is, the coupon is set so that the market price of

newly issued debt D equals its principal value mF . As an illustration, consider Aaa-rated firms

whose historical debt-to-EBITDA ratio is 0.90. When the value of corporate earning starts at

δ0 = 100, the face value of debt equals 90. Depending on the current level of ambiguity, the coupon

payment C̄ making the debt priced at par varies. For example, C̄ = 5.61 if A0 is at its historical

mean. To determine the unconditional expectation of model-generated credit spreads, we follow

Chen et al. (2009) by calculating the following conditional spreads for selected grids on A0

C̄(A0)

(
1

F
− 1

(C̄(A0) +mF )PV r+m(A0)

)
.

Thus, credit spreads are computed based on a nondefaultable bond with the same coupon rate and

interest frequency. The reported model spread for each rating group is the population average over

the steady-state distribution of At.
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4.2.2 Default Rates and Credit Spreads

One important empirical consideration in studying the credit spread puzzle is what kind of measure

for history spread levels should be used for comparison. The standard practice in the literature

is to set the firm’s leverage so that it is equal to the average leverage of firms in a particular

rating class, and then compare model-implied spreads with (weighted) average actual spread over a

period. However, David (2008) and Bhamra et al. (2010) are critical of this “averages-to-averages”

comparison, as it is subject to the convexity bias in credit spreads.28 In this paper, we adopt a

“medians-to-medians” strategy: first, the model is calibrated to the median financial ratios for a

given rating group, as listed in Table 4; second, the model’s prediction is compared with the median

spread across all bonds in that rating category. Besides avoiding the convexity issue, the use of

medians makes our calibration robust to the presence of potential outliers.

To obtain a long-span bond sample covering the entire 1985-2010 period, we consolidate corpo-

rate bond data from Lehman Brothers and Merrill Lynch databases: for the 1985-1997 period, we

extract all quotes (matrix prices are discarded) on noncallable U.S. bonds from Lehman Brothers

Fixed Income Database, whose availability is restricted after 1998; thenceforth we switch to Merrill

Lynch as the data source for bid quotes.29 To be included into the sample, a bond must belong

to a Lehman (now Barclays) or Merrill Lynch (now BofA ML) index and have at least 24 actual

monthly quotes during a 7-15 year maturity period. To construct credit spreads, we follow the

market convention to use the nearest-maturity Treasury bond as the benchmark. Monthly yields

of individual Treasuries are obtained from CRSP Monthly Bonds Master file.

Table 5 reports the median of the expected 10-year credit spread for individual bonds. We find

that for each rating group the average spread for a typical bond is smaller than the average spread

of the corresponding Barclays corporate bond index. Note that the latter is used by Huang and

Huang (2012) as a reference for comparison with model-predicted 10-year spreads. Three factors

might account for this spread discrepancy. First, the distribution of credit spread is known to

be right-skewed, and so the mean is likely to be higher than the median. Second, the bond pool

underlying these indices includes callable bonds, which are known to have generally higher credit

spreads than noncallable ones (Caouette et al., 1998). Third, our bond sample contains only bonds

28Huang and Huang (2012) and Chen et al. (2009) find that if structure models are calibrated to the historical
default loss experience, the convexity effect is small and makes the historical spread even more of a puzzle.

29The reason for retrieving bid prices instead of mid price is that the Warga Database contains only bid prices.
Both data sources are widely used in the corporate bond literature (Collin-Dufresne et al., 2001; Elton et al., 2001;
Eom et al., 2004; Chen et al., 2007; Schaefer and Strebulaev, 2008). We examine their comparability in term of data
quality and find a close match in their prices between December 1996 and December 1997, the period when these
two data sets overlap.
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close to 10-year maturity, but the indices are based on a wide array of bonds with diverse maturities

(their average time to maturity is 10.45 years). Table 5 indicates that this discrepancy is not due

to the switch to Merrill Lynch as the data source; it has the same magnitude in the subsample

before 1998. The last panel shows that over the second subsample period the average spread for a

typical noncallable bond is close to the average level of Merrill Lynch U.S. Corporate/High Yield

7-10Y Option-Adjusted Spreads.

Table 6 compares model-generated default probabilities and credit spreads to their empirical

counterparts. In contrast to many existing calibration studies, wherein attention is confined to

investment-grade bonds, our goal is to match the targets for both investment-grade and speculative-

grade debt. As Huang and Huang (2012) observe, when explaining the credit spread puzzle, it is

important to ensure that the proposed models do not over-predict credit spreads on high-yield

bonds. McQuade (2012), who considers model implications for all rating categories, makes the

same point.

The second column in Table 6 reports the average cumulative default probability over the ten-

year horizon for issuers of each initial credit ratings. These statistics are based on historical default

experiences from 1983 to 2010 (Ou et al., 2011), which closely match our sample period. As shown

in the third column, the model captures well the historical default rates for most rating categories,

although it underpredicts the default probability for Aaa-rated issuers. Given that the latter rarely

default, this shortcoming might best be attributed to a potentially large measurement error. In

untabulated results, we find significant variations in the model-implied default rates, which increase

uniformly with the initial level of ambiguity. Taking Baa bonds as an example, the ten-year forward

probability of default is 3.7% if A0 = 0.5%, while it rises to 6.6% if A0 = 1.8%.

While matching the historical default rates indicates how well the model quantifies the credit

risk under the physical measure, the model-generated credit spreads assess the model performance

under the risk-neutral measure. The results are reported in the right panel of Table 6. It is

well-known that non-credit factors, such as bond liquidity, account for a sizeable portion of yield

spreads, especially for investment-grade bonds. Thus, in testing the model’s predictions, we correct

the target spreads for the fractional liquidity components estimated by Longstaff, Mithal, and Neis

(2005), and by Chen, Cui, He, and Milbradt (2013). For example, the total yield for a typical Baa

bond is about 182 basis points, as reported in Table 6; the estimate by Longstaff et al. (2005) of

Baa bonds’ liquidity fraction is 29%. The credit component should account for 182 × 0.71 ≈ 129

basis points, as shown in the column labeled “Target 1”. As expected, the liquidity fraction of total

spread becomes smaller as the rating quality of the bond decreases, while the absolute magnitude

27



of the liquidity component decreases with the credit rating.

We find that the model successfully captures the level of spreads for both investment-grade

bonds and high-yield bonds. Our result indicates that we do not force the model to match the his-

torical spreads on high-quality bonds by overstating the amount of compensation demanded for per

unit of default risk. In other words, this model improves the pricing of corporate debt by producing

a higher level of uncertainty premium and by proposing a better structure for the market price of

uncertainty. To underline the effect of time-varying ambiguity, we also tabulate the credit spreads

generated by a simplified model with At ≡ Ā. The second column from the right indicates that the

simplified model substantially underperforms the model with time-varying ambiguity, especially for

investment-grade bonds. Indeed, the simplified model shows fairly limited improvement over the

baseline model where the agent is ambiguity neutral. This finding is consistent with Chen et al.

(2009), who conclude that time-varying asset Sharpe ratios are essential for explaining the credit

spread puzzle.

4.2.3 Theoretical Insights and Empirical Verification

However, time-varying Sharpe ratios alone do not suffice to account for the high level of historical

spreads — a point illustrated by the baseline model of Chen et al. (2009), where the default bound-

ary is constant. To explain the credit spread puzzle, Sharpe ratios need to show a strong correlation

with the default time. In our model, it is accomplished by the optimal default boundary δ∗ that

increases with the level of ambiguity. This positive covariation in turn drives up the risk-neutral

default probability far beyond its counterpart under the physical measure.

To demonstrate the effect of time-varying ambiguity on the firm’s default decision, in Figure 3

we plot δ∗ as a function of At. We focus on a typical Baa-rated firm with the current earning

level normalized to 100. The figure shows that the default boundary is higher when the outlook

for economic growth is more unclear than usual. In other words, the management is more likely to

exercise their default option earlier in the presence of a high degree of ambiguity. While Knightian

uncertainty has little impact on total cash flows to the firm, it generates the co-movement between

the default probability and market prices of uncertainty.

Note that the ambiguity level also determines the asset valuation ratios. Numerically, its nega-

tive effect on the price-earning ratio Lo dominates the positive effect on the earning-based default

boundary. Thus, the asset value at the time of default U∗ is negatively related to At, as indi-

cated by the red dashed line in Figure 3.30 The direction in which the default boundary moves

30This countermovement of default boundaries based on the cash flows and on the asset value is also documented
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actually constitutes an important empirical basis used in model validation and verification. For

instance, Davydenko (2012) finds that the value-based boundary is procyclical; this result supports

the prediction of Chen (2010) and Bhamra et al. (2010).

With the same methodology, we test the model implications by examining the relationship

between observed boundary levels and the degree of ambiguity in a cross-sectional regression setting.

Asset values at default are estimated based on observed market prices of debt and equity, as well

as empirical estimates of the risk-neutral default probability. In this study, default boundaries are

obtained as a byproduct of the estimation of the default cost. Following the convention in structural

modeling, we express default boundary as a fraction of the face value of outstanding debt. We find

that on average the location of the default boundary is measured at 68% of the book value of debt,

a value very close to the 66% reported by Reisz and Perlich (2007) and by Davydenko (2012).

Table 7 shows the results of regressions on the ambiguity measure and other theoretical de-

terminants. To correct for selection bias, we use Heckman (1976, 1979)’s procedure of two-stage

regressions. In the table, the inverse Mills ratio term turns out statistically insignificant in all nine

regression models listed. Therefore, the null of no selection bias cannot be rejected, and t-statistics

are computed based on unadjusted standard errors. The first set of regression indicates that a high

degree of ambiguity lowers the level of value-based boundary, which is consistent with the model’s

implication. The ambiguity factor alone explains 4.9% of variations in observed boundaries, which

is substantial compared to the R2 values reported by Davydenko. This effect is significant even

after controlling for other determinants suggested by structural models. Moreover, the ambiguity

measure seems to “crowd out” the significance of GDP growth rate, which is used to proxy for

macroeconomic conditions. This result implies that the ambiguity level contains relevant informa-

tion on corporate default behaviors above and beyond that contained in the business cycle.

4.3 The Levered Equity Premium and Risk-Free Rate

Corporate bonds and equities issued by the same firm are different contingent claims on the same

cash flows. Given its implications for bond pricing, this section examines our model’s ability

to match some key statistics of historical equity returns and moments of the risk-free rate. In

explaining these empirical regularities, we focus on the levered equity as a residual claim to earnings.

Our approach departs from most studies on equilibrium equity premium by introducing the default

risk dimension. As emphasized by Toft and Prucyk (1997) and Bhamra et al. (2010), this approach

preserves the direct link between the pricing of corporate securities and the firm-level decisions. In

by Hackbarth et al. (2006), Chen (2010) and Bhamra et al. (2010).
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contrast to exogenously specified dividend dynamics, it can generate a set of consistent processes

for the levered equity and derivatives that are based on it.

Table 8 compares the model-implied moments of equity returns to the data. The “Portfolio”

column reports real equity returns constructed using the CRSP value-weighted index. While the

statistics are computed from the data for the 1985-2010 period, they appear fully consistent with

the numbers for the entire post-war sample.31 Accordingly, model-implied moments are computed

based on the unlevered and levered claims to the aggregate output Ot.
32 For the levered equity,

the initial ratio of debt to cash flow is calibrated at 2.61, which is the median value for the Baa

credit rating. This calibration responds to the finding of Avramov et al. (2007) that the average

rating of 3,578 public firms rated by Standard & Poor’s is approximately BBB.

As documented in Bhamra et al. (2010), the uncertainty premium on the levered equity (5.9%)

is higher than that of the unlevered equity (4.1%), because the former is on a residual claim of

corporate cash flows after the interest expenses and taxes are deducted. The levered equity premium

matches the historical mean of excess stock returns.

Table 8 also presents the implications of a κ-ignorance model. Columns under the name “Con-

stant Ambiguity” show that the time-invariant ambiguity results in significantly lower uncertainty

premia on both unlevered and levered equities. To understand the contribution of temporal varia-

tions in At, recall the unlevered equity premium discussed in Section 3.4. Leaving all correlation

terms aside, Eq. (32) indicates that it is the sum of three conceptually different components. In the

κ-ignorance case, the first and third components—the standard risk exposure and the pure ambigu-

ity premium—are retained. Numerically, however, they are subordinate to the second component,

which is caused by the uncertainty associated with time-variations in the ambiguity level, or more

fundamentally, by the interaction of learning and ambiguity aversion. This is reflected in the 1.1%

unlevered equity premium with time-invariant ambiguity, against the 4.1% with time-varying ambi-

guity. This result is consistent with the findings of Leippold et al. (2008) that the equity premium

without learning “is too small for practical purposes”.

The model can also generate excess equity volatility. The model-implied volatility for levered

equity returns is 12.4% per annum. While this is a bit below that found in the data, it falls

within two standard errors of the empirically estimated volatility.33 As At follows a CIR process,

31For example, the excess returns are averaged out at 6.1 percent per annum, very close to the 6.2 percent estimated
over the sample from 1947 to 2001 (Piazzesi et al., 2007).

32To obtain the model’s implications for the levered equity, we run 1,000 simulations based on the Euler discretiza-
tion. Each simulation generates 26 years’ daily observations. Simulating the model at lower frequencies makes the
chance of getting negative values for At higher than 0.001.

33The standard error of equity volatility is estimated at 2.78%. It is Newey-West adjusted with the lag length equal
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its conditional standard deviation rises with the square root of its level. Consequently, equity

volatility is a non-decreasing and concave function of the ambiguity level. Given that equity price

is non-increasing in At, the model produces “the leverage effect” (Black, 1976).34 In contrast, the

model with invariant ambiguity predicts that the equity volatility is constant and equal to the

volatility of dividends.

The exercise just described could raises questions about the extent to which the aggregate stock

index is representative of a hypothetic Baa-level firm that is only exposed to systematic shocks. In

response to this concern, we calibrate the model using the method described in Section 4.2.1—the

firm’s earnings follow Eq. (18) with the total volatility calibrated to 12.16%, which is the median

volatility for Baa firms. These calibration results are then compared with the statistics for a typical

Baa-rated firm (the median values among all Baa firms).35 As indicated by the third column in

Panel A, a typical Baa firm has both a higher mean excess return and a higher return volatility

than the market index.

The last column shows the model’s implications for an individual Baa firm. Intuitively, the

inclusion of idiosyncratic cash flow risk should increase the default risk embedded in levered equity,

which is confirmed by the increased equity premium and volatility implied by the model. These

two quantities are largely consistent with their data counterparts listed in the third column. Note

that in the presence of idiosyncratic risk, the ambiguity level plays a limited role in determining

the condition volatility of equity returns — a pattern that is consistent with empirical evidence

that the volatility asymmetry is generally stronger for aggregate market index returns than for

individual stocks (Kim and Kon, 1994; Tauchen et al., 1996; Andersen et al., 2001). Moreover, the

model reproduces the stylized fact that individual firm volatility is approximately twice the level

of market volatility.36

As demonstrated in Chen et al. (2009), a key statistics to be matched in explaining the credit

spread puzzle is the average Sharpe ratio for a typical firm. In a departure from their procedures,

where the firm-level Sharpe ratio is an explicit calibration target, we calibrate our model to cor-

to 6 quarters.
34Here we slightly abuse this terminology. The term leverage effect reflects the fact that Black (1976) attributes

the asymmetric return-volatility relationship to changes in financial leverage. In our model this negative correlation
applies to unlevered equity, too, although we find that levered equity volatility increases with leverage (i.e., it decreases
with credit rating). In other words, the volatility asymmetry implied by our model captures the volatility feedback
effect rather than the leverage effect. Numerically we can confirm that the sensitivity of price-dividend ratio to
ambiguity, ξ1, increases with volatility parameter σa.

35The median is obtained from a July 1985 to December 2010 sample of BBB-rated stocks listed in the CRSP. The
sample’s beginning is determined by the first date for which credit ratings by S&P are available on the COMPUSTAT
database. To be included into the sample, the stock must have at least twelve consecutive monthly return observations.

36See, for example, Section 1 in Chen et al. (2009).
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porate earning volatility, which endogenously produces Sharpe ratios for individual firms. Based

on equity returns, the median Sharpe ratio of Baa-rated firms is about 0.28, which is remarkably

consistent with the 0.29 predicted by the model. If we consider only the systematic component

in a Baa firm’s cash flow, the model’s prediction is roughly comparable to the Sharpe ratio for

the market portfolio. However, when the ambiguity level is further restricted to a constant the

model-implied Sharpe ratio jumps to about 0.79. This reveals that the restricted model delivers

unrealistically high returns (on levered equity) per unit of standard deviation.

The model-generated mean of the risk-free rate, 1.18%, is almost identical to the historical

counterpart but a degenerate set of priors implies a significantly higher level. As shown in Eq. (15),

the restriction At ≡ Ā lessens the impact of Knightian uncertainty, which therefore works only

through the misspecification doubts about the expected consumption growth. In other words, the κ-

ignorance model preserves the first term in %1. In equilirium, this drift perturbation term decreases

rt by merely Ā/ψ = 0.61%, or not enough to account for the risk-free rate puzzle. Therefore,

the second term (θ − 1)η2
1σ

2
a/2, which is missing in the constant-ambiguity case, is necessary to

capture the low mean of historical interest rates. That term symbolizes the precautionary saving

motive caused by unknown future levels of ambiguity, and it leads to another 0.48% reduction in

the unconditional expectation of rt.
37 Hence, time-varying ambiguity is crucial for the model to

match the empirical moments of risk-free rates.

4.4 Dynamics of Asset Prices

While several extant preference-based models capture levels of equity premium and credit spreads,

their ability to match the historical behavior of asset prices has not been fully demonstrated. In

this section, we review some stylized facts about the dynamics of equity returns and extend them

to the corporate debt market. Section 4.4.1 investigates the forecasting power of the price-dividend

ratio: using this ratio equity returns and credit spreads are predictable but consumption and

dividend growth are not. The weak correlation between asset markets and macroeconomics, as

discussed in Section 4.4.2, poses another serious challenge. We find that our model can reproduce

these interesting findings and, more importantly, it accounts of historical fluctuations in the price-

dividend ratios and credit spreads over the last 26 years.

37Note that allowing for serial covariations between ct and At results in another 0.05% decrease in %1, which partially
accounts for the gap between risk-free rates generated by the models with and without time-varying ambiguity. This
cross-shock effect is reflected by the last term in Eq. (36b).
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4.4.1 Predictive Regressions

Panel A in Table 9 presents long-horizon regressions of excess stock returns on the log price-dividend

ratio in simulated and historical data. Our sample spans only a 26-year period, and consequently

our predictive regressions are run at a quarterly frequency. Mindful of issues arising from the use

of overlapping observations, we compute Hodrick (1992) standard errors to remove the moving

average structure in the error terms.38 Like Campbell and Shiller (1988) and Fama and French

(1988), we find that high equity prices imply low expected returns; both the absolute values of

slope coefficients and the R2 increase with the return horizon.

The last four columns show that the model captures the negative relationship between equity

premium and price-dividend ratio: high equity prices relative to dividends imply low ambiguity

levels, and therefore predict low future expected returns on stocks in excess of the risk-free rate. For

unlevered equity, the model-implied predictability appears too strong compared to that suggested

by the data; bear in mind that the log P/D ratio and equity premium are perfectly correlated.

Introducing default risk into the equity produces more realistic regression statistics. At the 5-year

horizon, the model-implied coefficient and R2 are almost identical to those in the data.

The price-dividend ratio’s link with the ambiguity level also connects it to credit spreads. Given

that ambiguity follows a mean-reverting process, we may expect some long-horizon predictability

of credit spreads. This is confirmed by results in Panel B: over the long run, high price-dividend

ratios forecast high credit spreads for the Baa bond index; at the one-year horizon, the P/D

ratio is not a powerful predictor.39 Regressions with the simulated data display a similar pattern.

For an individual Baa firm, the model-generated R2s are substantially lower than their empirical

counterparts because of the presence of idiosyncratic volatility. If we consider only systematic

variations in the corporate cash flow, the model-implied predictability is aligned with that observed

from market data, as shown in the last two columns.

The historical variation in price-dividend ratios could also be driven by changes in expected

dividends growth, in addition to movements in equity premium. However, previous studies (Camp-

bell, 1999; Lettau and Ludvigson, 2001) find that the P/D ratio is not useful for forecasting either

38Based on Hodrick (1992)’s t-statistics, the predictive ability of price-dividend ratio is marginally significant at a
short horizon of one year, but it disappears for longer horizons. We emphasize that our focus is not on testing the
predictability of stock returns. Even if we ignore the issues associated with statistical inference for the long-horizon
predictive regressions, existing evidence for return predictability is sensitive to changing samples (Goyal and Welch,
2003; Ang and Bekaert, 2007). Instead, the question examined here is whether the model can reproduce the seeming
forecasting power of price-dividend ratio.

39Shorter-horizon results, not reported in the table, suggest a negative relationship, which is consistent with the
persistence in the ambiguity evaluation. But the predictability is not significant either.
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consumption growth or dividend growth. In Panel C, we report the model-implied predictabil-

ity in dividend growth to assess its consistency with the empirical results. The estimated slope

coefficients for our sample are positive and somewhat higher than those reported by Beeler and

Campbell (2012), who use quarterly data from 1947Q2 to 2008Q4, but they are still insignificant

at any horizon. For both unlevered and levered equity the average coefficients implied from the

simulated samples are negative40; however, they are all within one standard error of corresponding

empirical estimates. At the same time, the model-implied 90% confidence bands for regression

coefficients and R2 contain the data counterparts.

According to (18), there is zero predictability in the firm’s cash flow growth. In our simulation

exercise, the P/D ratio exhibits a weak negative correlation with the future growth rate in the long

run due to the correlation term σoaσa
√
AtdBA,t. For the unlevered equity, its P/D ratio is linear

in the ambiguity level. So when it is currently high, the ambiguity level is likely to bounce back

to its long-run mean in the future. This tendency will negatively affect output/dividend growth,

especially in the long run. For the levered equity, this negative correlation is further weakened by

the nonlinearity in the relationship between the P/D ratio and ambiguity level.

For comparative purposes, Panel D provides regression results where consumption growth is

used as the dependent variable, as this regression specification is also estimated in Bansal and

Yaron (2004) and Wachter (2013). Again, both the data and the model suggest that price-dividend

ratios do not have any statistical or economic significance in predicting growth rates. The model-

implied average slope coefficients match the data well. While the empirical R2s are slightly lower

than the model’s predictions, they still fall into the 90% confidence band. Overall, the model

accounts for the absence of predictability in dividend & consumption growth.

4.4.2 Correlations

Cochrane and Hansen (1992) and Campbell and Cochrane (1999) point out that the weak cor-

relation between consumption growth and stock returns in the U.S. data is inconsistent with the

implication of many consumption-based models. For models solely driven by shocks to consump-

tion growth, these two series should be highly, if not perfectly, correlated. Similarly, if we simply

embed a Merton model inside these equilibrium models, we would expect changes in credit spreads

to have a strong but negative correlation with consumption growth. But empirically we find that

this correlation is as low as it is in the case of equity returns. These low correlations tend to

40Note that positive slope coefficient is not a permanent feature of predictive regressions of dividend growth. For
example, negative but insignificant coefficients are documented by Campbell (1999), whose sample covers the 1947Q2
- 1996Q3 period.
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foil economists’ attempt to link the stock and credit markets with the macroeconomics. However,

adding dynamics to the agent’s ambiguity aversion allows for new insights to understand the lack

of co-movement in these time series.

Panel A in Table 10 shows the correlation of consumption growth with market returns in actual

and simulated data. At a quarterly horizon, the contemporaneous correlation is measured at 0.10,

close to the 0.12 reported in Campbell and Cochrane (1999). Equity returns are negatively cor-

related with previous consumption growth and positively correlated with subsequent consumption

growth. To account for the weak correlation, exogenous shocks to the economy, besides consump-

tion shocks, are necessary. With innovations in the ambiguity level, the model implies a mean

correlation of 0.22. The simulated data suggests little correlation of returns with previous and

future consumption, but its 90% confidence intervals embrace the empirical correlation coefficients

for all leads and lags.

When studying consumption’s correlation with credit spreads, we examine the spreads for both

investment-grade and high-yield bonds. To disentangle variations in the credit components of yield

spreads, Panel B focuses on the results of the lowest investment-grade rating, Baa, and the highest

speculative-grade rating, Ba. In the data, there is a negative but weak correlation between spread

changes and economic fundamentals. In our model, changes in credit spreads result only from

uncertainty in ambiguity innovations, and as such they should be orthogonal to consumption growth

without the correlation term. Incorporating the empirical co-movement between the consumption

and ambiguity processes leads to correlation coefficients of -0.20 and -0.25. Consistent with the

data, the model implies a greater magnitude of correlation for high-yield bonds.

4.4.3 Historical Variations

An important advantage of our model is that it enables us to identify the time series of financial

variables based on the empirical measure for ambiguity and the calibrated model. A comparison

of these time series with their historical counterparts provides an intuitive way to evaluate the

model’s performance. Figure 4 presents the model’s prediction for the price-dividend ratio of

levered equity, and the actual price-dividend ratio on the CRSP value-weighted index. It is unclear

how well the index represents a levered claim to aggregate output; thus attention must be paid to

the historical fluctuations in (rather than the level of) the model-implied ratios. We conclude that

the model provides an accurate account of serial variation in the P/D ratio: it can reproduce the

countercyclical behavior of stock prices, as documented in Campbell and Shiller (1988) and Fama

and French (1989), and it captures shorter-term fluctuations within each business cycle. This high-
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frequency covariation incarnates an important model implication: changes in the ambiguity level

can lead to significant responses of asset prices, even without shocks to the economic fundamentals.

Indeed, the correlation between model-predicted and historical P/D ratios is 75%, which is much

higher than the number reported by Chen et al. (2009) (21%), who studied a different and shorter

sample period.

As Figure 5 suggests, the model is particularly useful for fitting the dynamics of historical

credit spreads. The ambiguity-implied Baa spread is depicted as the red dotted line. The blue

and green lines correspond to Barclays aggregate Baa bond spread and Merrill Lynch BBB 7-10Y

Option-Adjusted Spread, respectively. Again, the model’s prediction captures the countercyclical

pattern of historical spreads, and it exhibits similar dynamics within each business cycle. Indeed, its

correlations with both yield spread indices are higher than 82%. As a benchmark, the corresponding

correlation coefficients generated by Chen et al. (2009)’s and Buraschi et al. (2013)’s models are

72% and 41%, respectively.41 In Figure 5, the largest discrepancies between the observed and

model spreads occur around financial crises. This result is to be expected given that the liquidity

shortage tends to play an important role in these episodes, which are not modeled in this paper. In

summary, whereas the evidence presented in Figure 1 is merely suggestive of the role of ambiguity

in explaining the credit spread puzzle, that provided in Figure 5 is considerably more conclusive.

5 Conclusion

How do changes in aggregate uncertainty affect asset prices? In many established preference-

based models, the representative agent knows the objective probability law precisely. Under this

assumption, a change in uncertainty is typically described as an anticipated change in the quantity

of consumption risk or in the degree of risk aversion. In this paper, we depart from this assumption

by considering a continuous-time Lucas economy where the agent cannot estimate probabilities

reliably and has an aversion to the resulting ambiguity. In our model, an increase in uncertainty

causes the agent to feel even less confident in assigning probabilities.

This paper proposes a tractable way to incorporate these changes in Knightian uncertainty into

an equilibrium asset pricing model. With the max-min expected utility, the agent cares about the

span of all subjective priors (probability measures), and sets much higher prices for state-contingent

claims that pay off in concurrence with a great width of the span. In this setting, time-varying

41The Baa-Aaa yield spread predicted by David (2008)’s model achieves a 80% correlation with its historical
counterpart. However, this result is based on a unique calibration method: the model is fed with the time series of a
market-based leverage measure — the market value of assets divided by the book value of debt.
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ambiguity stands for a nondegenerate set of priors that capture the difficulty experienced by the

agent in assessing economic growth. With this interpretation, a negative shock to her confidence in

probability assessment leads to a large reaction in the marginal rate of substitution, even without

news about the fundamentals.

Methodologically, time-varying ambiguity is important in that it exerts both the first-order

and second-order effects on asset premia. The first-order effect is directly bound to the difference

between the true consumption growth and the current worst-case belief used by the agent to evaluate

assets; the second-order effect reflects the agent’s desire to hedge against permanent shocks to

the degree of ambiguity. Both channels are essential to generate the large premia embedded in

equity and corporate bond prices and to imply reasonable values for the mean and volatility of the

government bill rate. These theoretical implications are supported by the empirical evidence for

the predictability of realized asset premia produced by our novel measure of the ambiguity level.

Also consistent with the models predictions is the fact that the historical corporate default barrier

varies in response to changes in the amount of ambiguity.

Our ambiguity- based model provides a better fit with historical variations in stock prices and

credit spreads than do other existing frameworks that price equity and corporate debt jointly.

Our results suggest that economists should look beyond the business cycle when characterizing

the dynamics of asset prices. In the models of Chen (2010) and Bhamra et al. (2010), the fit

of the . With this interpretation, a negative shock to her confidence in probability assessment

leads to a large reaction in the marginal rate of substitution, even in the absence of news about

the fundamentals. Methodologically, time-varying ambiguity is important in that it exerts both

first-order and second-order effects on asset premia. The first-order effect is directly bound to the

difference between the true consumption growth and the current worst-case belief used by the agent

to evaluate assets. The second-order effect reflects the agents desire to hedge against permanent

shocks to the degree of ambiguity. Both channels are needed to generate the large premia embedded

in equity and corporate bond prices and to imply reasonable values for the mean and volatility of the

government bill rate. These theoretical implications are supported by the empirical evidence for the

predictability of realized asset premia produced by our novel measure of the ambiguity level. Also

consistent with the models predictions is the fact that the historical corporate default barrier varies

in response to changes in the amount of ambiguity. Our ambiguity- based model provides a better

fit with historical variations in stock prices and credit spreads than do other existing frameworks

that price equity and corporate debt jointly. Our results suggest that economists should look

beyond the business cycle when characterizing the dynamics of asset prices. In the framework of
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Chen (2010) and Bhamra et al. (2010), the model’s fit to the historical yield spreads is sacrificed

through a discretization of the expected consumption growth and consumption volatility. In this

manner they are able to deliver closed-form solutions to equity and debt prices with dynamic capital

structure. Given this insight, an extension of our model to allow for endogenous capital structure

presents an interesting topic for future research. It would be also useful to study how change in

the ambiguity level affects firms investment decisions.
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A Ambiguity about the Real GDP Growth

A.1 Details of the Data Set

Blue Chip Financial Forecasts provide an extensive panel of data on expectations by professional

economists from leading financial institutions and service companies. Each economist is asked to

forecast a large set of macroeconomic and financial variables. Our ambiguity measure draws on

the individual-level forecasts of real Gross National Product (GNP). The name of this variable was

changed to real Gross Domestic Product (GDP) after January, 1992.

Besides the Blue Chip survey, the Survey of Professional Forecasters (SPF) is another widely

used source of survey data.42 For the objective of this study, the Blue Chip’s data appears to bear

greater relevance, for two reasons.

First, as shown in Table A1, the Blue Chip keeps the number of respondents fairly stable over

the last thirty years, which is always within the interval between 44 and 50. By contrast, the

number of forecasters participating in the SPF varies enormously, from 9 to 53. This feature is

undesirable at least in the multiple-priors framework, because changes in the subjective set of priors

should not be a mere reflection of rapid turnover of survey participants. Instead, they are supposed

to mirror updates of beliefs.

Second, Table A1 indicates that the composition of the Blue Chip’s forecaster panel is main-

tained almost constant over time. On average, about 94% of analysts appearing in the current

period’s publication also participate in the survey of the preceding period. Instead, it is not un-

usual that a batch of respondents suddenly drops out of the SPF for a large number of periods,

and suddenly re-enters.43 If the forecast is more closely associated with the individual participant,

the highly fluctuant constitution makes the panel unsuitable for our extraction of the set of priors.

A.2 Alternative Measures of Ambiguity

In providing empirical support for a link between ambiguity and variance premium, Drechsler (2013)

proxies the size of ambiguity by the cross-sectional standard deviation in growth forecasts. By the

same spirit, Ulrich (2013) uses the variance of inflation forecasts to quantify the ambiguity about

the inflation dynamics. These empirical measures are conceptually consistent with the way they

construct the set of alternative beliefs. Specifically, they set a upper bound for the (growth rate

of) relative entropy44 which, in this paper’s setting, is equivalent to a upper bound for the norm

42Livingston Survey also provides economists’ forecasts of real GDP growth rate, but at a semiannual frequency.
43The problems associated with changing composition of the SPF panel are discussed exhaustively in Engelberg

et al. (2011).
44It is the Kullback-Leibler distance between an alternative probability measure and the reference measure.
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of the density generator (ϑt). This approach to restricting the amount of ambiguity is adopted in

Hansen and Sargent (2008)’s robust control framework.

With multiple-priors preferences the belief set is restricted by a rectangular set of density

generators. This rectangularity inspires our use of cross-sectional range, rather than standard

deviation, as the ambiguity measure. As discussed in Epstein and Schneider (2003), which type

of restriction to be imposed in ambiguity modeling “will typically depend on the application”.

Empirically, nevertheless, we can still draw a comparison between these two cross-sectional measures

of growth ambiguity to see which one possesses greater explanatory power for asset premia.

Panel A of Table A2 assesses the predictive performance of standard-deviation-based measure.

The in-sample results indicate that it has significant forecasting power for credit spreads, to a

degree similar to that of our measure Ãt. However, it loses the statistical significance when used

to predict the excess returns on equity and Treasury bonds. In contrast, Ãt is significant in

predicting the market premia on all these three asset classes, as we have seen from Table 1. The

out-of-sample analysis conveys a similar message: the standard deviation of forecasts can predict

credit spreads but not equity and bond returns. When used to forecast excess equity returns, it

cannot beat historical average, as evidenced by the negative out-of-sample R2s.45 Its insignificance

is surprising given Drechsler (2013)’s finding that it has nontrivial correlation with the variance

premium, which is shown to have significant predictive power for equity returns. The information

content of our measure Ãt is not surpassed by the variance premium. Untabulated result shows

that in conjunction with the variance premium Ãt remains significant in the predictive regression

and leads to an adjusted R2 of 7.8%.46 This result highlights the distinction between ambiguity

measures based on interdecile range and standard deviation of survey forecasts.

In an early version of Ilut and Schneider (2014), their measure for the ambiguity level is the

difference between the 75th percentile and the 25th percentile in each cross-section of forecasts.

The resulting interquartile range is actually Philadelphia Fed’s definition of “forecast dispersion”,

and is included in its SPF database.47 We construct this measure using the Blue Chip data. Panel

B presents its association with realized asset premia. Comparing the results with Table 1, we find

that it possesses the same degree of predictive power as the interdecile range. The only noticeable

difference is that the interquartile range is significant only at the 10% level in the out-of-sample

test for the predictability of equity returns.

45Under the null of no predictability, the out-of-sample R2 is expected to be negative. See Campbell and Thompson
(2008) for a detailed discussion.

46We thank Ivan Shaliastovich for suggesting this exercise.
47In statistics, the interquartile range is often used to find outliers in data instead of removing them.
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Table A1: Survey Data Summary and Description

Yr-Qtr No BC Pct BC No SPF Pct SPF Yr-Qtr No BC Pct BC No SPF Pct SPF Yr-Qtr No BC Pct BC No SPF Pct SPF

1985Q1 45 24 75% 1993Q4 47 94% 34 79% 2002Q3 49 96% 35 91%

1985Q2 48 94% 29 69% 1994Q1 50 94% 30 83% 2002Q4 48 98% 35 83%

1985Q3 47 100% 31 71% 1994Q2 47 96% 35 80% 2003Q1 47 96% 37 78%

1985Q4 48 98% 25 84% 1994Q3 47 96% 30 87% 2003Q2 46 96% 35 86%

1986Q1 46 98% 26 77% 1994Q4 50 92% 30 73% 2003Q3 47 96% 30 80%

1986Q2 46 98% 28 75% 1995Q1 49 98% 29 83% 2003Q4 47 94% 34 71%

1986Q3 43 100% 24 71% 1995Q2 48 98% 52 52% 2004Q1 46 100% 32 81%

1986Q4 45 91% 24 71% 1995Q3 48 96% 52 85% 2004Q2 46 96% 32 78%

1987Q1 46 94% 22 86% 1995Q4 49 88% 47 87% 2004Q3 46 98% 30 87%

1987Q2 50 92% 28 71% 1996Q1 49 92% 38 92% 2004Q4 44 95% 34 79%

1987Q3 50 100% 22 91% 1996Q2 47 94% 42 74% 2005Q1 47 91% 36 86%

1987Q4 44 100% 20 80% 1996Q3 49 92% 42 79% 2005Q2 48 94% 46 59%

1988Q1 48 96% 18 72% 1996Q4 49 98% 37 84% 2005Q3 50 94% 53 79%

1988Q2 47 96% 19 74% 1997Q1 49 98% 38 82% 2005Q4 50 98% 51 94%

1988Q3 49 94% 18 78% 1997Q2 47 96% 40 83% 2006Q1 50 96% 53 87%

1988Q4 48 98% 15 80% 1997Q3 47 96% 37 86% 2006Q2 49 92% 53 92%

1989Q1 49 96% 17 71% 1997Q4 48 92% 38 82% 2006Q3 50 94% 51 86%

1989Q2 49 98% 17 71% 1998Q1 45 98% 32 94% 2006Q4 50 94% 51 86%

1989Q3 47 100% 15 73% 1998Q2 48 91% 29 76% 2007Q1 51 98% 49 86%

1989Q4 50 94% 17 71% 1998Q3 48 88% 32 69% 2007Q2 51 100% 53 81%

1990Q1 48 100% 14 64% 1998Q4 45 96% 33 73% 2007Q3 50 100% 49 88%

1990Q2 48 98% 9 78% 1999Q1 47 91% 33 76% 2007Q4 48 100% 48 81%

1990Q3 47 98% 13 54% 1999Q2 46 91% 37 65% 2008Q1 47 96% 50 84%

1990Q4 47 96% 30 33% 1999Q3 48 90% 37 81% 2008Q2 46 96% 50 84%

1991Q1 48 94% 35 63% 1999Q4 46 89% 43 70% 2008Q3 46 98% 47 83%

1991Q2 48 96% 42 79% 2000Q1 47 91% 36 83% 2008Q4 45 98% 51 76%

1991Q3 50 96% 33 91% 2000Q2 44 91% 34 76% 2009Q1 46 87% 43 91%

1991Q4 48 100% 39 79% 2000Q3 46 93% 32 84% 2009Q2 46 89% 51 78%

1992Q1 49 96% 40 90% 2000Q4 46 98% 34 82% 2009Q3 48 90% 34 94%

1992Q2 48 98% 37 95% 2001Q1 43 98% 35 83% 2009Q4 48 94% 41 66%

1992Q3 48 96% 36 83% 2001Q2 46 89% 33 94% 2010Q1 49 96% 42 90%

1992Q4 48 98% 40 83% 2001Q3 47 100% 33 82% 2010Q2 48 100% 44 89%

1993Q1 49 −−∗ 34 94% 2001Q4 42 95% 29 79% 2010Q3 46 100% 36 92%

1993Q2 50 94% 36 78% 2002Q1 49 86% 35 63% 2010Q4 48 94% 43 74%

1993Q3 49 98% 35 83% 2002Q2 47 96% 37 84%

* In January 1993, the Blue Chips changed the coding system used to identify individual forecasters.

This table provides descriptive results on the panelists participating in the Blue Chip Financial Forecasts
and the Survey of Professional Forecasters. The columns named “No BC” and “No SPF” report the number of
respondents contained in the survey of each period. The columns named “Pct BC” and “Pct SPF” show the
percentage of current panel members that also respond to the last period’s survey. The sample period spans from
1985Q1 to 2010Q4.
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Table A2: Predictive Power of Alternative Ambiguity Measures

Coefficient t-stat Adj R2 Out-of-Sample R2 Clark-West p-value

Panel A: Forecasting with the standard deviation of survey forecasts

rMt+1 2.871 (1.388) 0.015 −0.031 0.149

CSAaat+1 0.374 (1.976) 0.057 0.035 0.079

CSAat+1 0.700 (3.589) 0.140 0.115 0.018

CSAt+1 0.797 (2.933) 0.106 0.100 0.035

CSBaat+1 0.930 (2.604) 0.095 0.088 0.024

CSBat+1 3.665 (3.476) 0.286 0.256 0.079

CSBt+1 5.070 (4.197) 0.308 0.318 0.018

rxIntt+1 0.931 (1.398) 0.004 0.009 0.098

rxLongt+1 2.393 (1.361) 0.011 0.017 0.070

Panel B: Forecasting with the interquartile range of survey forecasts

rMt+1 3.422 (2.150) 0.022 0.017 0.078

CSAaat+1 0.444 (1.811) 0.106 0.083 0.055

CSAat+1 0.668 (2.434) 0.157 0.127 0.044

CSAt+1 0.843 (2.383) 0.148 0.131 0.031

CSBaat+1 0.984 (2.652) 0.133 0.123 0.015

CSBat+1 2.421 (2.605) 0.221 0.216 0.001

CSBt+1 3.395 (2.935) 0.240 0.274 0.000

rIntt+1 2.136 (2.259) 0.023 0.021 0.063

rxLongt+1 4.402 (2.065) 0.017 0.025 0.049

This table contains results of predictive regressions on two alternative measures of the ambiguity level. The first
one (in Panel A) is the cross-sectional standard deviation of economist forecasts of real GDP growth; the second
one (in Panel B) is the interquartile range (the difference between the 75th percentile and the 25th percentile) of
these forecasts. rMt is defined as the difference between the continuously compounded return on the CRSP value-
weighted index and the contemporaneous return on a 3-month Treasury bill. CSAaat — CSBt denote the credit
spreads of Barclays (Lehman Brothers) bond indices. rIntt+1 and rLongt+1 are quarterly returns on the Barclays long-term
and intermediate-term Treasury indices in excess of the contemporaneous return on a 3-month Treasury bill. For
regressions of excess returns, t-statistics computed following the procedures in Hodrick (1992); for regressions of credit
spreads, the method of Newey and West (1987) is applied with a lag truncation parameter of 6. The last two columns
report Campbell and Thompson (2008)’s out-of-sample R2s as well as p-values of the Clark-West test. The sample
period spans from 1985Q1 to 2010Q4.
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B Equilibrium Prices and Affine Approximation

Given the value function of the representative agent as defined in Eq. (8), to make J(Ct, At) +∫ t
0 f(Cs, J(Cs, As))ds a martingale under the most pessimistic probability measure we have

DC,AJ + f(C, J)− θ∗(A)JCCσc = 0.

Conjecture that J has the functional form (12). Substituting it into the differential equation above,

we obtain

(1− γ)

(
µc −A−

1

2
γσ2

c + (
LA
L
θ − 1

2
γσca)σcaσ

2
aA

)
+

DALθ

Lθ
+
θ

L
− βθ = 0, γ, ψ 6= 1. (35)

Eq. (11) in Proposition 1 is a special case with the correlation parameter σca equal to 0.

To solve the model, we employ Collin-Dufresne and Goldstein (2005)’s log-linear approximation

that essentially minimizes the expected squared approximation error. Specifically, we seek an

exponential affine expression for the price-consumption ratio as presented in Eq. (13), such that

the left hand side of Eq. (35) is linear in At except for the θ/L term. In that case, the parameters

η0 and η1 can be obtained by solving the following optimization problem

min
η0,η1

E
[
(n0 + n1At − θe−η0−η1At)2

]
,

where

−n0 = (1− γ)(µc −
1

2
γσ2

c ) + θ(η1κAĀ− β),

−n1 = (1− γ)

(
(η1θ −

1

2
γσca)σcaσ

2
a − 1

)
− θ(η1κA −

1

2
θη2

1σ
2
a).

Figure A1 makes a comparison of this approximate price-consumption ratio with the one numeri-

cally solved from Eq. (11). These two solutions turn out fairly close to each other. Indeed, when

the ambiguity level is around its long-run mean, they are almost indistinguishable from each other.

This result demonstrates the accuracy of the exponential affine approximation.

In the same manner, we can also derive an approximate solution for the price-output ratio Lot .

By Itô’s product rule, the expected market return on a claim to aggregate output can be written

as

r − 1

Lo
=

1

dt
EQ

[
dLo

Lo
+
dO

O
+
dLo

Lo
dO

O

]
.

Again, we approximate the Lo(A) as a simple exponential formula (24), with ξ0 and ξ1 minimizing

the mean squared error

min
ζ0,ζ1

E
[
(m0 +m1At − e−ξ0−ξ1At)2

]
,
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where

−m0 = −%0 + µc − γσcσoσoc + ξ1κAĀ,

−m1 = −%1 − σoσoc/σc − (γσca + (1− θ)η1)σoaσ
2
a − ξ1κA

+

(
1

2
ξ2

1 − ξ1σoa − ξ1(γσca + (1− θ)η1)

)
σ2
a.

Similarly, parameters ζ0 and ζ1 in Eq. (25) can be identified by solving the following optimization

problem

min
ζ0,ζ1

E
[
(l0 + l1At − e−ζ0−ζ1At)2

]
,

where

−l0 = −%0 + ζ1κAĀ,

−l1 = −%1 − ζ1κA +

(
1

2
ζ2

1 − γσcaζ1 − (1− θ)η1ζ1

)
σ2
a.

With first-order conditions for optimal consumption choice under ambiguity, Chen and Epstein

(2002) drive the following stochastic discount factor (SDF)

Mt = e
∫ t
0 fJ (Cs,Js)dsfC(Ct, Jt)Z

θ∗
t ,

where Zθ∗ is the Radon-Nikodỳm derivative corresponding to the worse-case prior. The multiple

prior preference is reflected in the presence of Zθ∗: if P0 is the only belief in the prior set P, it

degenerates to one, and SDF becomes the standard one in Duffie and Epstein (1992) and Duffie

and Skiadas (1994).

To prove Proposition 2, we apply Itô’s lemma to the pricing kernel. It follows that

rt = −E
(
dMt

Mtdt

)
= γ

[
µc −A−

1

2
(γ + 1)σ2

c +
LA
L

(θ − 1)σcaσ
2
a

]
− DALθ−1

Lθ−1
− θ − 1

L
+ βθ.

Connecting it with Eq. (11), we obtain the risk-free rate as a linear function of the ambiguity level

rt = %0 + %1At

where

%0 = ρµc + β − 1

2
γ(1 + ρ)σ2

c , (36a)

%1 = −ρ+
1

2
(θ − 1)η2

1σ
2
a + σca[(θ − 1)η1 −

1

2
γ(1 + ρ)σca]σ

2
a. (36b)

If the consumption growth is a random walk independent of innovations in the ambiguity level, the

last term in Eq. (36b) vanishes and the expression for %1 coincides with Eq. (15).
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Figure B1: Approximate Solution for the Price-Consumption Ratio
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This figure shows the accuracy of our approximation of the price-consumption ratio Lt as an exponential affine
function of the ambiguity level At. The red dashed line displays the approximate solution for L(A), and the blue
solid line the solution literally evaluated from the differential equation (11). The ODE is solved using the MATLAB
function “ode45”, with the initial condition

L(0) =
θ

(1− γ)(µc − 1
2
γσ2

c )− βθ
.

The grid line to the X-axis represents the historical mean of At.

C Pricing of Corporate Securities under Time-Varying Ambiguity

As a standard approach to endogenous default problems, we look for a solution to a free boundary

problem analogous to that in Leland (1994a,b), with the additional spatial variable At. The free

boundary δ∗ has to be determined as part of the problem

L r
δ,AE + (1− τe)(δ − C)−mF +D(δ, A) = 0, (37)

L r+m
δ,A D + (1− τi)mC +m2F = 0, (38)

with boundary conditions given in Section 3.4.

Given the scale parameter ε incorporated in (27), it seems convenient to write the operator as

a sum of components that are separated by the different powers of ε

L r
δ,A = L r

0 +
√
εL1 + εL2
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where

L r
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∂
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2
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,
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2
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We note that L0 is simply the Black-Scholes operator with the risk-neutral drift

µQδ = µc − σoσcσocγ − σoσocA/σc − [γσca + (1− θ)η1]σoaσ
2
a,

and conditional variance

σ̄2 = σ2
o + σ2

oaσ
2
aA+ σ2

j .

L2 is the Dynkin operator of the At process under the physical measure. L1 contains the mixed

derivative, due to the covariation between aggregate output and the ambiguity, and the first-order

derivative due to the uncertainty premium imposed on the At process.

As discussed in Section 3.4, we look for an asymptotic solution for E and D as an expansion in

powers of
√
ε. Inserting the expansion series in (27)-(28) into the PDE (37) and (38), we obtain

(1− τi)mC +m2F+ L r+m
0 D0 +

√
ε(L1D0 + L r+m

0 D1)

+ ε(L2D0 + L1D1 + L r+m
0 D2) +O(ε

3
2 ) = 0, (39)

(1− τe)(δ − C)−mF+ D(δ, A) + L r
0 E0 +

√
ε(L1E0 + L r

0 E1)

+ ε(L2E0 + L1E1 + L r
0 E2) +O(ε

3
2 ) = 0. (40)

Equating to zero the first few terms independent of ε leads us to the solution for the lead-order

prices as shown in Eq. (29) and (30), where

αr = −
µQδ − σ̄

2/2 +
√

(µQδ − (σ2
o + σ2

oaσ
2
aA+ σ2

j )/2)2 + 2r(σ2
o + σ2

oaσ
2
aA+ σ2

j )

σ2
o + σ2

oaσ
2
aA+ σ2

j

,

αr+m = −
µQδ − (σ2

o + σ2
j )/2 +

√
(µQδ − (σ2

o + σ2
j )/2)2 + 2(r +m)(σ2

o + σ2
j )

σ2
o + σ2

j

.

Next, the order
√
ε terms in the expansion (39) and (40) give the following equations for the

first-order corrections

L1D0 + L r+m
0 D1 = 0,

L1E0 + L r
0 E1 = 0.
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Boundary conditions are constructed by substituting the expansion series into original conditions

(19) and (23)

D1(δ∗0) + δ∗1
∂D0

∂δ
|δ=δ∗0 = (1− φ)mδ∗1e

ξ0+ξ1At ,

lim
δ→∞

D1(δ) = 0,

E1(δ∗0) = 0,

where we have used the fact that limδ→∞D0(δ) does not depend on δ. Finally, we can use (20) to

find the order
√
ε term in the expansion (31) for the optimal default barrier

∂E1

∂δ
|δ=δ∗0 + δ∗1

∂2E0

∂δ2
|δ=δ∗0 = 0.

Since δ∗0 has been determined in Eq. (34), the first-order correction terms E1 and D1 actually solve

a one-dimensional fixed boundary problem.

Likewise, the second-order price corrections are the solution to the following problem

L2D0 + L1D1 + L r+m
0 D2 = 0,

L2E0 + L1E1 + L r
0 E2 = 0,

D2(δ∗0) + δ∗1
∂D1

∂δ
|δ=δ∗0 + δ∗2

∂D0

∂δ
|δ=δ∗0 + δ∗21

∂2D0

∂δ2
|δ=δ∗0 = (1− φ)mδ∗2e

ξ0+ξ1At ,

lim
δ→∞

D2(δ) = 0,

E2(δ∗0) = 0,

∂E2

∂δ
|δ=δ∗0 + δ∗1

∂2E1

∂δ2
|δ=δ∗0 + δ∗2

∂2E0

∂δ2
|δ=δ∗0 + δ∗21

∂3E0

∂δ3
|δ=δ∗0 = 0.
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Table 1: Asset Return and Credit Spread Predictability by the Ambiguity Level

Coefficient t-stat Adj R2 Out-of-Sample R2 Clark-West p-value

rMt+1 2.923 (2.736) 0.043 0.038 0.035

CSAaat+1 0.239 (2.140) 0.093 0.072 0.007

CSAat+1 0.384 (3.026) 0.159 0.122 0.022

CSAt+1 0.473 (2.764) 0.144 0.130 0.006

CSBaat+1 0.566 (2.842) 0.137 0.126 0.002

CSBat+1 1.438 (3.014) 0.260 0.236 0.000

CSBt+1 1.939 (3.536) 0.262 0.255 0.004

rIntt+1 1.112 (3.091) 0.032 0.025 0.030

rlongt+1 2.774 (2.416) 0.024 0.019 0.064

This table contains results from regressing (one-quarter-ahead) excess stock returns, credit spreads and excess
bond returns on the proposed measure of ambiguity level. rMt is defined as the difference between the continuously
compounded return on the CRSP value-weighted index and the contemporaneous return on a 3-month Treasury bill.
CSAaat — CSBt denote the credit spreads of Barclays (Lehman Brothers) bond indices. rIntt+1 and rLongt+1 are quarterly
returns on the Barclays long-term and intermediate-term Treasury indices in excess of the contemporaneous return
on a 3-month Treasury bill. t-statistics are computed following the procedures of Newey and West (1987) with a lag
truncation parameter of 6. The last two columns report Campbell and Thompson (2008)’s out-of-sample R2s as well
as p-values of the Clark-West test. The sample period spans from 1985Q1 to 2010Q4.

Table 2: Moments of the Ambiguity Level

Panel A: Variance Ratios Tests Panel B: Properties of Skewness

Horizon(yr) VR(i) 90% 95%

2 1.232 1.108 1.142 Sample 0.820

5 1.841 1.191 1.278 90% 0.504

10 2.363 1.241 1.398 95% 0.358

Panel A shows the variance ratios (VR) for the absolute value of the residuals from a AR(5) model for the
ambiguity measure,

Ãt =

5∑
j=1

BjL
jÃt + εt,

where L is a lag operator. Bootstrap percentiles are computed by resampling the residual series for 10,000 times,

under the null hypothesis that realized volatility were i.i.d.. Panel B presents skewness estimates and corresponding

bootstrap confidence percentiles. The sample period spans from 1985Q1 to 2010Q4.
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Table 3: Estimation of Model Parameters

Parameter Estimate s.e. Parameter Estimate s.e.

Consumption & Output Ambiguity

µc × 102 1.54 (0.32) κA 0.30 (0.10)

σc × 102 0.82 (0.19) Ā× 102 1.11 (0.12)

σca −0.11 (0.04) σa × 102 8.13 (2.05)

σo × 102 1.21 (0.22)

σoc 0.64 (0.11)

σoa −0.39 (0.08)

This table reports estimated model parameter values based on the closed-form maximum likelihood estimation
of the model using U.S. data at a quarterly frequency. The sample period spans from 1985Q1 to 2010Q4.
Quantities shown in parentheses are the misspecification-robust standard error obtained using the Huber sandwich
estimator (Aı̈t-Sahalia, 2012). They are reported as the significand sharing the same scientific notation with the
corresponding point estimate.

Table 4: Calibration of Corporate-Level Parameters

Panel A: Parameters on Tax Rates and Default Losses

τc τd τi b0 b1

0.35 0.12 0.296 0.113 11.846

Panel B: Calibration Target by Credit Rating

Rating Groups Aaa Aa A Baa Ba B

Debt/EBIT 0.90 1.43 1.85 2.61 3.25 5.03

EBIT Volatility 9.82 8.60 10.52 12.16 16.58 13.64

Panel A reports the calibration values of parameters that do not vary among different credit ratings. τc denotes
the corporate tax rate, τd the personal tax rate on dividends and τi the tax rate on coupon income. Panel B shows
some target parameters for individual firms’ calibration by credit rating group. Debt-EBIT ratio is measured as
(Short-Term Debt + Long-Term Debt) / EBITDA, corresponding to F/δ in the model. EBIT volatility is measured
as standard deviation of trailing five years of net revenue growth. Aggregate metrics reported in the table are the
median values by credit rating. The underlying data are taken from Moodys Financial Metrics, a data and analytics
platform that provides as-reported and adjusted financial data, ratios, models and interactive rating methodologies.
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Table 5: Average Credit Spreads of Ten-Year Bonds

Aaa Aa A Baa Ba B

1985-2010:

Individual Bonds 77 91 117 182 298 488

Barclays Idx. 95 112 147 210 390 580

1985-1997:

Individual Bonds 70 87 106 153 276 459

Barclays Idx. 84 109 125 179 340 532

1998-2010:

Individual Bonds 80 95 131 198 334 506

Barclays Idx. 106 115 169 242 420 609

BofA ML Idx. 74 100 132 194 372

This table shows the levels of historical averaged 10-year credit spreads across ratings categories. For rows named
“Individual Bonds”, average yield spread is firstly calculated for each bond with maturity between 7 and 15 years,
and the median value is then taken across bonds. Individual bond’s quotes are obtained from Lehman Brothers fixed-
income data set for the 1985-1997 period, and from Merrill Lynch for the 1998-2010 period. The ”Barclays Idx.” rows
report the average credit spreads of Barclays U.S. Aggregate Corporate/High Yield Bond Indices, and the “BofA ML
Idx.” rows show the means of Bank of America Merrill Lynch U.S. Corporate/High Yield 7-10Y Option-Adjusted
Spreads.

Table 6: Model Implications for Default Rates and Credit Spreads

10-yr Default Prob (%) 10-yr Credit Spread (bp)

Constant Time-Varying

Data Model Target 1 Target 2 Ambiguity Ambiguity

Aaa 0.19 0.04 39 33 8 32

Aa 0.50 0.42 46 39 18 49

A 2.22 1.18 66 67 53 78

Baa 4.89 4.24 129 131 85 153

Ba 21.34 14.76 247 241 164 225

B 45.19 40.13 −− −− 312 407

This table shows historical and model-implied 10-year default probabilities and 10-year credit spreads by credit rating
group. Estimates of historical default frequancies for senior unsecured bonds are from Ou et al. (2011). Columns
named “Target 1” and “Target 2” report median corporate yield spreads, as listed in Table 5, corrected for the
non-default component. They are calculated based on the fractional sizes of the liquidity component estimated
by Longstaff et al. (2005) and Chen et al. (2013), respectively. The column named “Constant Ambiguity” reports
model-generated credit spreads for a spacial case with At ≡ Ā.
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Table 7: The Effect of Ambiguity on the Default Boundary

Ãt −0.198 −0.146 −0.193 −0.175 −0.150 −0.192 −0.203 −0.194 −0.184

(−3.450) (−2.053) (−2.796) (−3.648) (−2.606) (−3.305) (−3.551) (−3.446) (−2.998)

Maturityj,t −0.091

(−6.723)

rft −0.452

(−0.211)

V olj,t −0.286

(−2.781)

Couponj,t −2.845

(−3.232)

Costj,t 0.322

(3.040)

Payoutj,t 0.395

(0.553)

GDPt 0.038

(0.837)

Taxj,t 0.245

(1.088)

1/Mills −0.082 −0.105 −0.075 −0.047 −0.061 −0.119 −0.084 −0.086 −0.132

(−0.793) (−1.172) (−0.682) (−0.679) (−0.727) (−1.073) (−0.834) (−0.845) (−1.562)

Const. 0.966 0.965 0.979 1.099 1.095 0.713 0.927 0.936 0.706

(4.622) (4.164) (4.769) (4.230) (4.558) (2.635) (4.582) (4.393) (4.589)

Adj R2 0.049 0.208 0.045 0.113 0.086 0.165 0.124 0.048 0.038

N 230 230 230 230 225 114 227 230 144

This table reports cross-sectional regressions of the empirically observed boundary on the ambiguity level and other
theoretical determinants. The default boundary is defined as the value of firm’s asset at default, scaled by the face
value of debt. The regression coefficients are estimated with the Heckit model (Heckman, 1976, 1979). 1/Mills
denotes the inverse Mills ratio obtained from the first-stage regression, which includes all independent variables at
the second stage and the quick ratio. The values of t-statistics are reported in parentheses. The sample period spans
from 1983 to 2010.

Table 8: Simulated and Sample Moments of Equity Return and Risk-Free Rate

Data Constant Ambiguity Time-Varying Ambiguity

Portfolio Individual Unlevered Levered Unlevered Levered Individual

E(re,t − rt) 6.13 8.98 1.11 2.09 4.13 5.94 7.81

σ(re,t) 16.58 32.97 1.18 2.67 6.72 12.39 26.63

E(re,t − rt)/σ(re,t − rt) 41.49 28.33 93.97 78.62 73.75 48.60 29.24

E(rt) 1.21 1.70 1.18

σ(rt) 1.18 0 0.92

This table shows historical and model-implied unconditional moments of the equity returns and the risk-free
rates. In the “Data” section, the “Portfolio” column reports the return on the NYSE/AMEX/NASDAQ value-
weighted index, and the “Individual” column contains the median descriptive statistics of monthly returns on all
Baa rated stocks listed on CRSP. The “Time-Varying Ambiguity” section reports the implications of our benchmark
model, while the “Constant Ambiguity” section shows a special case with At ≡ Ā. Columns labeled “unlevered” and
“levered” present the results on unlevered and levered perpetual claims to the aggregate output. The “Individual”
column corresponds to a typical Baa firm whose earnings growth rate is also subject to idiosyncratic shocks. The
sample period spans from 1985 to 2010.
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Table 9: Long-Horizon Predictive Regressions

Panel A: Predictability of Excess Returns

Horizon

Data Unlevered Levered

Coeff. s.e. R2 Coeff. R2 Coeff. R2

1 −0.15 (0.08) 0.10 −0.35 0.19 −0.18 0.13

3 −0.39 (0.23) 0.16 −0.73 0.33 −0.49 0.21

5 −0.78 (0.44) 0.29 −1.08 0.43 −0.78 0.30

Panel B: Predictability of Credit Spreads

Horizon

Data Individual Portfolio

Coeff. s.e. R2 Coeff. R2 Coeff. R2

1 0.45 (0.24) 0.04 0.39 0.03 0.42 0.06

3 0.81 (0.26) 0.14 0.56 0.06 0.69 0.21

5 0.84 (0.38) 0.15 0.58 0.07 0.64 0.17

Panel C: Predictability of Dividend Growth

Horizon

Data Unlevered Levered

Coeff. s.e. R2 Coeff. R2 Coeff. R2

1 0.0172 (0.0477) 0.0036 -0.0105 0.03 -0.0068 0.01

[-0.07, 0.05] [0.00, 0.09] [-0.04, 0.04] [0.00, 0.05]

3 0.0237 (0.1261) 0.0027 -0.0258 0.07 -0.0092 0.02

[-0.17, 0.12] [0.00, 0.20] [-0.14, 0.13] [0.00, 0.11]

5 0.1751 (0.2487) 0.1244 -0.0378 0.10 -0.0151 0.04

[-0.25, 0.17] [0.00, 0.26] [-0.20, 0.18] [0.00, 0.14]

Panel D: Predictability of Consumption Growth

Horizon

Data Unlevered Levered

Coeff. s.e. R2 Coeff. R2 Coeff. R2

1 0.0025 (0.0068) 0.0052 -0.0033 0.02 -0.0021 0.02

[-0.04, 0.03] [0.00, 0.08] [-0.03, 0.03] [0.00, 0.06]

3 −0.0045 (0.0166) 0.0035 -0.0094 0.05 -0.0026 0.02

[-0.11, 0.09] [0.00, 0.20] [-0.04, 0.04] [0.00, 0.09]

5 −0.0070 (0.0326) 0.0075 -0.0135 0.07 -0.0074 0.04

[-0.17, 0.13] [0.00, 0.27] [-0.09, 0.08] [0.00, 0.17]

This table shows regression results of excess stock returns
∑4h
j=1(re,t+j/4 − rt+j/4), credit spreads CSBaa,t+h,

consumption growth
∑4h
j=1 ∆ct+j/4, and dividend growth

∑4h
j=1 ∆δe,t+j/4 on the log price-dividend ratios for h = 1, 3,

and 5 years. In Panel A, C and D, “s.e.” denotes Hodrick (1992) standard errors; in Panel B it corresponds to Newey
and West (1987) standard errors. The entries for the model are the mean, 5% and 95% percentiles (in brackets)
based on 1,000 simulated samples with 26× 252 daily observations that are aggregated to a quarterly frequency. The
sample period spans from 1985 to 2010.
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Table 10: Correlations of Consumption Growth with Equity Returns and Credit
Spreads

Panel A: Consumption Growth w/ Stock Returns

Data Model

Unlevered Levered 90% Intvl.

re,t,∆ct−2 −0.05 −0.01 −0.01 [-0.21, 0.19]

re,t,∆ct−1 −0.01 −0.01 −0.02 [-0.22, 0.18]

re,t,∆ct 0.10 0.26 0.22 [0.03, 0.34]

re,t,∆ct+1 0.15 0.00 0.00 [-0.19, 0.17]

re,t,∆ct+2 0.13 0.00 0.01 [-0.18, 0.19]

Panel B: Consumption Growth w/ Changes in Credit Spreads

Baa Ba

Data Model 90% Intvl. Data Model 90% Intvl.

∆CSt,∆ct−2 0.17 0.02 [-0.16, 0.22] 0.19 0.01 [-0.17, 0.19]

∆CSt,∆ct−1 0.15 0.02 [-0.17, 0.21] 0.12 0.00 [-0.18, 0.17]

∆CSt,∆ct −0.12 −0.20 [-0.33, -0.03] −0.17 −0.25 [-0.42, -0.08]

∆CSt,∆ct+1 −0.16 0.00 [-0.18, 0.18] −0.18 −0.01 [-0.18, 0.17]

∆CSt,∆ct+2 −0.21 −0.01 [-0.20, 0.18] −0.14 −0.02 [-0.20, 0.16]

This table shows historical and model-implied correlation of consumption growth with stock returns, and with
changes in credit spreads, for different leads and lags. The column labeled “Data” in Panel A reports the correlation
between growth rate of aggregate consumption and returns on the NYSE/AMEX/NASDAQ value-weighted index.
The “Data” columns in Panel B display the correlations of consumption growth with changes in yield spreads of
Barclays U.S. Corporate Baa Bond Index and Barclays U.S. High Yield Ba Bond Index over Barclays U.S. Treasury
Bond Index. The entries for the model are the means, 90% confidence intervals based on 1,000 simulated samples
with 26× 252 daily observations that are aggregated to a quarterly frequency. All empirical data involved cover the
period from 1985 to 2010, and are sampled at a quarterly frequency.

60



Figure 1: Historical Default Rates, Levels of Ambiguity, and Price-Dividend Ratios
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This figure shows the Moody’s corporate default rates (red solid line), the annualized measure of ambiguity

level constructed from professional forecasts (blue dashed line), and the logarithm price-dividend ratio on the

NYSE/AMEX/NASDAQ value-weighted index (green dash-dot line). The y-axis on the left side applies to the

first two time series, and the y-axis on the right side the last. Shaded bars denote months designated as recessions

by the National Bureau of Economic Research. The sample period spans from 1985 to 2010.
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Figure 2: Density Functions of the Amount of Ambiguity At
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This figure shows empirical densities of At (black lines) and simulated densities (green and red lines). “Simulated SR”
denotes the simulated density of the estimated mean-reverting square-root process, with µA,t = κA(A − At) and
σA,t = σa

√
At in Eq. (10), and “Simulated OU” the corresponding Ornstein-Uhlenbeck process with σA,t = σA.
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Figure 3: Optimal Default Boundary as a Function of the Ambiguity Level
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This figure plots the optimal default barriers for a typical Baa-rated issuer, against the level of ambiguity. The
solid blue line shows the default boundary in terms of the corporate earnings δ∗(A). The dashed red line shows the
unlevered asset value at default U∗(A). The optimal boundary is computed assuming the firm’s cash flow starts at
δ0 = 100.
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Figure 4: Historical and Modeled Price-Dividend Ratios
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This figure displays the realized time variations in price-dividend ratio and the model’s prediction. The solid blue
line shows the historical price-dividend ratio on the NYSE/AMEX/NASDAQ value-weighted index. The dashed red

line shows the model-generated P/D ratio computed based on historical values of the ambiguity measure Ãt. Shaded
bars denote months designated as recessions by the National Bureau of Economic Research. The sample period spans
from 1985 to 2010.
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Figure 5: Historical and Modeled Spreads in Yields between Baa and Default-Free
Bonds
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This figure displays the realized time variations in 10-year credit spreads for Baa bonds. The solid blue line shows the
historical credit spread of Barclays U.S. Aggregate Corporate Baa Bond Index, and the dashed green line corresponds
to Bank of America Merrill Lynch U.S. Corporate BBB Option-Adjusted Spread. The dotted red line shows the
model-generated credit spread computed based on historical values of the ambiguity measure Ãt. Shaded bars denote
months designated as recessions by the National Bureau of Economic Research. The sample period spans from 1985
to 2010.
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