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ABSTRACT 

 

When a new security goes off the run, search frictions increase and matching of trades becomes 

less efficient. We assess this effect on market quality by following trades of individual 

Treasuries through different stages of off-the-run. When a Treasury security goes off-the-run, it 

dramatically reduces liquidity, increases volatility and price impacts of trades, and affects the 

volatility-volume relation. Search frictions also reduce informativeness of trades and speed of 

price adjustment to information shocks, thereby impeding price discovery and inducing 

significant price discount. Despite the short-term adverse effects, we find no evidence that search 

frictions cause segmentation in the Treasury market. 
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Search problems are prevalent in financial markets. In a typical negotiated market, an investor 

who wants to trade must search for counterparties. During the search process, investors incur 

monetary or nonmonetary costs (e.g., time for waiting), which depends on the ease of meeting 

counterparties and externalities in the order matching process (e.g., automation or human-

assisted systems). While an investor’s search efficiency can improve by a canvass of 

intermediaries, contact with these intermediaries is not always immediate and often must be done 

sequentially. To trade with an intermediary, an investor needs to have an account and credit 

clearance, along with other requirements. The number of accounts that an investor can establish 

dictates their access to services of intermediation and available search options. An investor’s 

outside options also depend on how easily s/he can locate a counterparty. All else equal, 

investors with fewer search options are expected to receive less favorable prices.  

Liquidity and price discovery are perhaps the two most important functions of financial 

markets. Intermediaries play a crucial role in facilitating these functions in their capacity of 

matching buyers and sellers and providing liquidity. A number of studies have shown that search 

frictions affect bid-ask spreads, risk premia, and price dynamics. The importance of search 

frictions has been increasingly recognized in financial research. Recent attempts to incorporate 

search frictions into financial models have yielded considerable insights into asset pricing, 

liquidity and market efficiency (see, for example, Duffie, Gârleanu, and Pedersen, 2005, 2007; 

Vayanos and Wang, 2007; Vayanos and Weill, 2008; Brunnermeier and Pedersen, 2009; Duffie, 

2010; Feldhütter, 2012; He and Milbradt, 2014; Duffie, Dworczak, and Zhu, 2015). By delving 

into the effects of trading frictions and search-and-bargaining on intermediation and asset prices, 

these models have generated a wealth of implications for market microstructure and the pricing 

of assets in a frictional world. 

This paper expands the current literature by investigating the role of search frictions in 

affecting liquidity and price discovery of Treasury markets. Liquidity and adverse selection often 

reinforce each other. As an example, smaller stocks or bonds are less liquid and more opaque, 

and these securities tend to have lower trading volume, higher information asymmetry, and 

greater adverse selection. The greater adverse selection discourages participation by liquidity 

traders and makes the market for these securities even less liquid. In such circumstance, it is 

difficult to disentangle the effects of liquidity and adverse selection. In our paper, we overcome 

this difficulty by taking advantage of the unique auction process in the U.S. Treasury market to 
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identify the impact of search frictions on liquidity and to isolate their effects on market quality 

and price discovery.  

In the Treasury market, the newly issued security is referred to as “on the run”, and when a 

new security is auctioned, the previously issued security of a similar maturity goes “off the run”. 

The on-the-run issue is actively traded but immediately after it goes off the run, it becomes much 

less active. Because there are no discernable difference in the payoff-related information, 

whatever the differences between on- and just off-the-run issues are attributable to the liquidity 

differential between these two types of securities. This control experiment granted by periodic 

auctions permits us to isolate the effects of search frictions on market microstructure and the 

pricing of Treasury securities. 

The on-the-run security is nearly identical to the just off-the-run security in payoff structure 

and maturity. However, immediately after the security goes off the run, trading volume drops 

substantially. The significant decline in trading volume makes it difficult to match buyers and 

sellers of off-the-run securities. In other words, search frictions, in terms of difficulty of finding a 

match, increase dramatically after a Treasury security goes off the run. We exploit this unique 

feature associated with the auction event to have better controls on information-related factors 

and to focus on the effects of search frictions on liquidity and price discovery of the Treasury 

market. 

By focusing on the effects of search frictions, we document a number of unique findings that 

contribute to the current literature. First, we find that market quality deteriorates significantly 

after a Treasury security goes off the run. Liquidity declines dramatically, bid-ask spreads widen, 

prices become more volatile, and order imbalance increases. Results show that the auction event 

has drastic impacts on the microstructure of the off-the-run market. Second, we find a strong 

negative relation between return volatility and trading volume for highly liquid on-the-run 

Treasury issue but a positive relation for illiquid off-the-runs. This finding is in stark contrast to 

the literature of microstructure which prescribes a positive volatility-volume relation in a liquid 

market that attracts informed traders (e.g., Jones, Kaul, and Lipson, 1994; Andersen, 1996; 

Dufour and Engle, 2000; Downing and Zhang, 2004; Xu, Chen, and Wu, 2006). We show that 

the positive volatility-volume relation for off-the-run bonds is attributed to liquidity frictions, 

consistent with predictions of the search-based theory of Duffie, Gârleanu, and Pedersen (2005, 
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2007).1 Similarly, we find a positive (negative) relation of bid-ask spreads to trading volume for 

off-the-run (on-the-run) securities, which has little to do with asymmetric information. Instead, 

this bid-ask spread behavior is driven predominantly by illiquidity associated with search and 

trading frictions in an inactive market. 

Third, price impacts of trades are much higher for off-the-run securities. The higher price 

impacts are due to higher search frictions when a security goes off the run, rather than adverse 

selection. We find that the magnitude of price changes associated with trades or volume is much 

larger for illiquid off-the-runs than for liquid on-the-runs. This finding is robust to controls of 

different trading intervals, bid-ask bounce, time duration between trades, and order imbalance.  

Fourth, we document strong evidence that search frictions affect price discovery and 

Treasury price dynamics. We show that the adjustment speed of prices to the new equilibrium is 

slower for off-the-run securities when there is an information shock. There is evidence to suggest 

that investors of off-the-runs are less attentive to macroeconomic news. Prices of off-the-runs do 

not converge to the fundamental value promptly and consequently, causes greater price 

deviations from on-the-runs in the short run. This effect is more pronounced surrounding the 

macroeconomic information announcement. Investors’ inattentiveness to news contributes to the 

slow adjustment of prices to information shocks and affects price dynamics in a manner 

portrayed by Duffie (2010). Moreover, search frictions affect the information efficiency in the 

Treasury market. We find that both asymmetric information component of transaction prices and 

informativeness of trades are much lower for securities with higher search frictions associated 

with going off the run. 

Finally, despite higher yields and lower liquidity for off-the-run securities, there is no 

evidence that the on- and off-the-run markets are segmented. The analysis of cointegration shows 

that these markets are integrated and suggests that the spread between on- and off-the-run notes 

is an equilibrium phenomenon consistent with the prediction of the dynamic equilibrium asset 

pricing model that assets with higher search frictions are priced with a greater discount.  

Our paper is related to a number of studies on the information of trades, order flow, trading 

venue, liquidity, volatility and pricing in the Treasury market (Green, 2004; Brandt and 

Kavajecz, 2004; Goldreich, Hanke, and Nath, 2005; Barclay, Hendershott, and Kotz, 2006; 

Pasquariello and Vega, 2007, 2009; Li et al., 2009; Engle et al., 2012; Liu et al., 2014; Jiang, Lo, 

                                                      
1 Wang and Wu (2015) take a similar approach to study the effects of search frictions in the corporate bond market. 
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and Valente, 2014; Fleming, Mizrach, and Nguyen, 2014; Fleming and Nguyen, 2015). Our 

work complements these studies by documenting the effects of search frictions in the Treasury 

market. The paper closest to our work is Barclay, Hendershott, and Kotz (2006). This paper 

examines the choice of trading venue by dealers in U.S. Treasury securities to determine when 

services provided by human intermediaries are difficult to replicate in fully automated trading 

systems. It finds that human intermediaries can uncover hidden liquidity and facilitate better 

matching of customer orders in less active markets such as off-the-runs. Unlike this paper which 

investigates the roles of electronic and human-assisted trading systems and market shares, our 

study focuses on the effects of search frictions on market quality, price discovery and the 

equilibrium relationship between on- and off-the-run markets.   

Our focus on the on-/off-the-run phenomenon is related to a number of important studies on 

this issue (e.g., Vayanos and Weill, 2008; Pasquariello and Vega, 2009; Fontaine and Garcia, 

2012; Shen and Yan, 2015). Our paper is differentiated from these studies by investigating the 

implications of search frictions for market quality and price discovery surrounding the event 

when a security goes off the run. Our work is also related to past studies on price discovery and 

asset returns in different markets (e.g., Barclay and Hendershott, 2003; He et al., 2009; Ghysels 

et al., 2015). Recent studies have shown illiquidity associated with search frictions can strain 

capital markets and affect asset pricing and market liquidity (see Brunnermeier and Pedersen, 

2009; Duffie, 2010; Gârleanu and Pedersen, 2011; He and Milbradt, 2014). Building on 

theoretical constructs of search-based models, we provide empirical evidence that search 

frictions affect liquidity and asset pricing in the Treasury market. 

More importantly, we find that illiquidity associated with search frictions significantly affect 

price discovery and market quality. To our knowledge, this paper represents the first effort to test 

the implications of search-based models using Treasury transaction data. We show that search 

frictions not only affects the efficiency of trade matches, bid-ask spreads and asset pricing as 

predicted by search-based theories but also have important consequences for price discovery and 

market quality. Treasury yields provide important information for risk-free rates, which are 

essential for pricing all other financial assets. Our findings for the effects of search frictions on 

the pricing of securities and price discovery in the Treasury market thus have relevant 

implications for asset pricing and microstructure of other assets. 

The remainder of the paper is organized as follows. Section I discusses the data and 
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highlights important effects of the event when a security goes off the run on the microstructure of 

the Treasury market. Section II presents empirical results associated with the effects of search 

frictions on market quality and price discovery. Section III conducts cointegration analysis to 

examine whether on- and off-the-run markets are integrated. Finally, Section IV summarizes 

main findings and concludes the paper. 

 

I. Data 

The primary source of our transaction data for U.S. Treasury securities is the GovPX. This is 

the main database providing publicly accessible data for off-the-run issues traded in the 

interdealer market. Another data source is BrokerTek which covers interdealer transactions on 

the electronic trading system. However, BrokerTek only provides transaction data for on-the-

runs. To avoid the confounding effects due to different trading platforms, we focus on the 

GovPX data set which covers both on- and off-the-run transactions. Using the GovPX data also 

allows us to compare the results of the previous studies, which were used by most previous 

research. 

GovPX consolidates quote and trade data from major brokers in the interdealer market, and 

records quote and trade information in the time unit of seconds. The dataset contains the best bid 

and ask quotes and associated quote size and yields, transaction prices and associated trading 

size and yields, and the buy-/sell-indicator, i.e., a “take” (buyer-initiated) or “hit” (seller-

initiated) order. The dataset also includes security information such as CUSIP, type, coupon, 

maturity date, and on- and off-the-run indicators. GovPX identifies a newly issued security as 

on-the-run until another new issue with the same maturity is auctioned.  

Trades in GovPX can be identified by changes in accumulated volume. However, GovPX 

stopped reporting this data item after March 2001. We identify trades using the method of Man, 

Wang, and Wu (2013). This method suggests that trades can be identified based on changes in 

trade sign (hit or take), price and size. If there is a change in any of these three items: trade sign, 

price, or size, it will be treated as a new trade. According to Man et al. (2013), the accuracy of 

this method for identifying actual trades is very high.2  

We select securities with maturity of 2, 5 and 10 years because they are most liquid and 

issued regularly. Our sample contains transaction data during the daytime trading hours, from 

                                                      
2 Man et al. (2013) show that the accuracy of identifying actual trades using this procedure is about 97%. 
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7:30 a.m. to 5:00 p.m. Eastern Time (ET), over the period from January 1992 to December 2008. 

Unlike corporate bond and stock markets, trading in the Treasury market is round the clock. 

Nevertheless, trading volume and frequency are much higher and the market is much more liquid 

during the New York daytime trading hours.  

To have tighter control on external factors, we focus on the auction event window 

surrounding the day when a security goes off the run. The typical auction cycle is monthly for 2-

year note, and quarterly for 5- and 10-year notes. We define the off-the-run day (t = 0) as the day 

after the auction for the subsequent note with the same maturity. The auction event window is (-

20, +19) for 2-year note and (-60, +59) for 5- and 10-year notes. We denote the newly issued 

note as on-the-run, the issue just one auction away (within the event window) as the just-off-the-

run, and older issues with multiple auctions away as off-the-runs or more off-the-runs. 

Table I summarizes average daily trading data for on- and just-off-the-run 2-, 5- and 10-year 

notes. Mean trading frequency, volume, size, and depth are much higher, and bid-ask spreads, 

order imbalance and standard deviation of price changes are much lower for on-the-runs than for 

just-off-the-runs. Results show that liquidity for on-the-run notes is much higher than for just-

off-the-runs.  

[Insert Table I here] 

Figure 1 portrays the daily trading activity for 2-year, 5-year and 10-year Treasury notes over 

the auction event window. Trading data are averaged daily across securities with the same 

maturity on a given day relative to the off-the-run day. The horizontal axis denotes the days in 

relation to the off-the-run day. As shown, on the day of going off the run, average daily trading 

frequency, volume, and depth drop dramatically3 and continue to decline thereafter. Off-the-run 

issues farther away from the auction day trade less frequently and have lower trading volume. 

Average trade size also decreases while order imbalance and bid-ask spreads increase and prices 

become more volatile after a security goes off the run. Larger order imbalance and price 

volatility reflect higher search and trading frictions as it becomes more difficult for traders to 

locate counterparties for off-the-runs due to the less active market.  

[Insert Figure 1 here] 

Results show that the off-the-run event has dramatic impacts on the microstructure of the 

Treasury market. After a security goes off the run, liquidity dissipates rapidly. Although the drop 

                                                      
3 Barclay, Hendershott, and Kotz (2006) report a pattern of trading volume similar to ours. 
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in trading volume for off-the-runs has been noted previously, we show that many other 

microstructure variables are also significantly affected. Participants in the on- and off-the-run 

markets and investor clienteles are quite different between the two markets (Duffie et al., 2007). 

In the on-the-run market, participants are predominantly short-term sophisticated traders, such as 

hedgers, speculators and dealers. By contrast, in the off-the-run market, participants are typically 

buy-and-hold investors who have little incentive to trade in the short run. Illiquidity and inactive 

investors contribute to higher search frictions and lower liquidity, making it more difficult to 

locate counterparties in the off-the-run market.   

 

II. Empirical Results 

We begin our analysis by examining how search frictions affect the price and trading 

dynamics of Treasury securities. The Treasury auction market provides an ideal laboratory to 

study the effects of search frictions. Immediately after an issue goes off the run, liquidity drops 

and trading patterns change dramatically while there is no significant change in the payoff-

relevant information. This unique setting allows us to isolate the effect of liquidity frictions on 

price and trading dynamics of Treasury securities. We show that traders in the on-the-run market 

are more attentive to new information by comparing price movements on days with and without 

news announcements. Moreover, trades of on-the-run notes contain more information than those 

of off-the-run notes. Finally, despite the differences in trading and price behaviors in the short 

run, we show that the on- and off-the-run markets are cointegrated with each other in the long 

run.  

A. The Relation between Volatility and Volume 

Return volatility and its relation with trading volume are widely studied in the literature. 

Standard market microstructure theory suggests that information is incorporated into prices 

through trading activities. According to this theory, the arrival of new information induces trades 

and moves prices, thereby leading to higher price volatility. This results in a positive relation 

between price volatility and volume (e.g., Admati and Pfleiderer, 1988). In sharp contrast, the 

liquidity-based theory predicts a negative relation between volatility and volume in the presence 

of search frictions (e.g., Duffie, Gârleanu, and Pedersen, 2005, 2007). The search-based theory 

suggests that when trading volume is high, search frictions are low. Lower frictions reduce price 

fluctuations or volatility, leading to a negative relation between volume and volatility. Thus, 
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information- and search-based theories generate dramatically different predictions for the 

volatility-volume relation. An important question is which theory better explains the volatility 

and volume behaviors in the Treasury market. 

To test the competing hypotheses, we regress return volatility of bond i at time t against 

trading volume with an interactive off-the-run dummy variable over the auction event window:  

 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 = 𝛼 + 𝛽1𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 + 𝛽2(𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 ∗ 𝐷𝑖,𝑡
𝑜𝑓𝑓

) + 𝜀𝑖,𝑡  (1) 

where 𝐷
𝑜𝑓𝑓

 is the dummy variable which takes value 1 for just-off-the-run notes and 0 for on-

the-run notes. Volatility is measured by standard deviation of transaction price changes (in bps) 

and volume is total trading volume (in $billion) in a given day. 𝛽1 captures the volatility-volume 

relation when the note is on the run whereas 𝛽2 captures the incremental effect of volume when 

the note is just off the run. 

The null hypothesis is that 𝛽1  < 0,  𝛽2  > 0, and 𝛽1 + 𝛽2> 0. These sign restrictions are 

consistent with the predictions of the search-based theory. Because just-off-the-run securities are 

illiquid, search cost is high and investors need to give more price concessions to attract 

counterparties. Prices thus deviate more often from the fundamental value and volatility of 

transaction prices is higher as trades and volume increase. This results in higher susceptibility of 

price volatility to trading volume. On the contrary, liquidity is high for on-the-runs. As it is much 

easier to match trades, prices will not fluctuate much from the fundamental value. A large 

number of orders from both buy and sell sides balance each other and smooth the price. Higher 

volume is thus accompanied by lower price volatility, leading to a negative relation between 

volatility and volume.  

Table II reports the results of the panel regression with control for bond-specific fixed effect. 

Consistent with the prediction of the search-based theory, 𝛽1 is negative and 𝛽2 is positive. The 

value of 𝛽2  in absolute terms is much larger than 𝛽1 , rendering a positive volatility-volume 

relation for just-off-the-runs. These findings are at odds with the prediction of the information-

based theory. Studies in the Treasury market have shown that informed traders concentrate on 

the on-the-run market (see Green, 2004; Brandt and Kavajecz, 2004). According to the 

information-based theory (Jones, Kaul, and Lipson, 1994), trades of liquid on-the-run securities 

should carry more information and hence exhibit a positive volatility-volume relation. 

Nevertheless, against this prediction, we find a significant negative relation between volatility 

and volume for on-the-run securities. This finding is however consistent with the prediction of 
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the search-based theory and suggests that search frictions, rather than information frictions, 

shape the unique volatility-volume behavior in the Treasury market. 

B. The Relation between Bid-Ask Spreads and Volume 

We next examine the behavior of bid-ask spreads. A number of models have been proposed 

to explain the bid-ask spread. 4  The information-based theory suggests that trading volume 

contains private information which has a positive impact on the bid-ask spread. On the other 

hand, the search-based theory suggests that under symmetric information, high search frictions 

are associated with large bid-ask spreads (Duffie, Gârleanu, and Pedersen, 2005). When trading 

volume and frequency are high, search frictions are low and it is easier to match trades. The 

lower participation rate for market makers reduces the bid-ask spread as dealers can lower their 

inventory holdings and associated costs.  

In the U.S. Treasury market, positions in on-the-run securities are plenty and it is easy to find 

counterparties to match their trades. For these securities, trading volume is high and search 

frictions are low, and according to the search-based theory, bid-ask spreads would tend to be low 

when search frictions are low. By contrast, for just-off-the-run securities, volume is thin, search 

frictions are high, and it is more difficult to locate counterparties to trade. Investors have to rely 

more on intermediaries to complete their transactions and it is more difficult for individual 

traders to compete with dealers through limit orders or find a direct counterparty to trade. As a 

result, bid-ask spreads would tend to be higher.  

To see whether the information- or search-based theory has higher explanatory power, we 

regress bid-ask spreads on trading volume with a dummy variable for just-off-the-runs:  

 𝑆𝑝𝑟𝑒𝑎𝑑𝑠𝑖,𝑡 = 𝑎 + 𝑏1𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 + 𝑏2(𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 ∗ 𝐷𝑖,𝑡
𝑜𝑓𝑓

) + 𝜖𝑖,𝑡     (2) 

The null hypothesis is b1 < 0, b2 > 0, and b1 + b2 > 0 where b1 measures the effect of volume on 

bid-ask spreads for on-the-run securities and b1 + b2 is the effect for just-off-the-run securities. 

Again, we run panel regressions with control for bond-specific fixed effect. 

The right panel of Table II reports the results of bid-ask spread regressions. As shown, 𝑏1 is 

significantly negative and b2 is significantly positive. The sum of 𝑏1  and 𝑏2  is positive, 

suggesting that volume has a positive effect on bid-ask spreads for just-off-the-run securities. 

The positive effect of volume for just off-the-run securities cannot be attributed to asymmetric 

                                                      
4 See, for example, Glosten and Milgrom (1985), Stoll (1989), Easley et al. (1996), Huang and Stoll (1997), and 

Madhavan, Richardson, and Roomans (1997). 
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information as the literature has shown that informed traders avoid these illiquid Treasury 

securities (see Brandt and Kavajecz, 2004). Instead, the differential volume effect is largely due 

to the difference in search frictions between on- and just-off-the-runs. Results strongly support 

the prediction of search-based models that higher search frictions for off-the-runs increase bid-

ask spreads.  

[Insert Table II here] 

C. Price Impacts  

The search-based and information-based theories also yield distinct predictions for price 

impacts. The search-based theory suggests that price impacts are higher for securities with higher 

search frictions. When search frictions are high, it is more difficult to find counterparties to trade. 

A seller needs to give price concessions to attract a buyer whereas a buyer needs to pay a 

premium to attract a seller. These deviations from the fundamental value are expected to be 

larger when search frictions are higher. Thus, price impacts of trades tend to be high when search 

frictions are high for securities such as off-the-runs. This suggests that price impacts of trades 

will be higher for off-the-runs than for on-the-runs. On the other hand, the information-based 

theory suggests that informed trading concentrates on liquid securities. On-the-run and just-off-

the-run securities are very similar in terms of payoff. The information-based theory predicts that 

informed traders will choose the venue with higher liquidity to trade when two securities are 

similar. Trades of on-the-run securities should therefore carry more information and their 

impacts on prices are greater. Conversely, as informed traders avoid illiquid off-the-run 

securities to minimize transaction cost, price impacts are expected to be low for these illiquid 

securities because their trades do not contain information. Hence, contrary to the search-based 

theory, the information-based theory predicts that price impacts are higher for on-the-run trades 

than for off-the-run trades. 

We test the implications of alternative theories by examining the price impacts of trades 

using different model specifications. We first regress log absolute midquote changes on trading 

volume (size) using trade-by-trade data. Using midquotes instead of trading prices mitigates the 

bid-ask bounce effect. We estimate the following regression for on- and just-off-the-runs jointly 

by including an off-the-run dummy variable: 

 𝑀𝑖𝑑𝑞𝑢𝑜𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑖,𝑡 = 𝛼 + 𝛽1𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 + 𝛽2(𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 ∗ 𝐷𝑖,𝑡
𝑜𝑓𝑓

) + 𝜀𝑖,𝑡       (3) 
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where volume is equal to trade size in this trade-by-trade regression and 𝐷𝑖,𝑡
𝑜𝑓𝑓

 takes value one for 

an off-the-run trade. By construction, the coefficient of trade size for just-off-the-run notes is 

𝛽1 + 𝛽2. The search-based theory predicts that  𝛽2 and 𝛽1 + 𝛽2 are both positive.  

Panel A of Table III shows estimation of price impacts of trades. In column 1, the coefficient 

of trade size (or volume) is negative for on-the-run notes but positive for just-off-the-run notes. 

This implies that for liquid on-the-run securities, price impact is lower when trade size is larger. 

The result is consistent with the finding in bond markets that trading cost is lower for large size 

of trades (see Edwards, Harris, and Piwowar, 2007). On the other hand, for illiquid off-the-run 

securities, results show that price impacts are positively related to trade size. This finding is 

consistent with the search-based model prediction. For illiquid securities, it is more difficult to 

find counterparties who are willing to trade at a large amount. To attract counterparties, investors 

thus have to give more price concessions. Also, from the perspective of liquidity providers, 

liquidity is more valuable when trading illiquid securities and so they charge more for providing 

liquidity. This explains the positive coefficient of trade size for just-off-the-runs.  

Hasbrouck (1991a) shows that trading activity has persistent impacts on prices. To account 

for this effect, we next include lagged variables up to five periods in column 2. Results show that 

controlling for the effects of lagged variables reduces the coefficient of contemporaneous trade 

size for on-the-runs but the sign of the coefficient remains negative in most cases. For just off-

the-run securities, the coefficient of current trade size remains positive and highly significant 

across all notes.  

Trade-by-trade data can be noisy, which may lead to imprecise coefficient estimates. To 

mitigate this effect, we use data at 5- and 30-minute trading intervals to obtain more precise 

estimates of price impacts (see also Fleming, 2003). Unlike the trade-by-trade case, trading 

activity now can be represented by volume, number of trades, and average trade size. The price 

impact is measured by log absolute midquote changes, |log (
𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑡

𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑡−1
) |, where 𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑡 is 

the midquote at interval t.  Panel B of Table III reports the results of regressions at the 5- and 30-

minute intervals. To investigate the role of each trading variable, we estimate the regression with 

a single trading variable (columns 1-3) and with combination of trading variables (columns 4-5).   

Results show that the coefficients of trading frequency and volume are positive and greater 

for just-off-the-run bonds in all cases, consistent with the prediction of search-based models. The 
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coefficient of trade size is negative for on-the-runs and positive for off-the-runs similar to the 

results in the trade-by-trade regressions. Controlling for the effect of trading frequency, the sign 

of volume and trade size becomes negative for on-the-runs. In the off-the-run market, trading 

frequency is low and volume is thin. Also, trades often come from the same side in a short 

trading window and fewer liquidity providers are willing to take large positions. These factors 

tend to increase the impacts of trading variables on prices.  

[Insert Table III here] 

As a robust check, we also use both midquote changes without taking the absolute value and 

absolute transaction price changes (with no log transformation) as the dependent variable and 

find similar results in terms of sign and significance of coefficients. In addition, we run the 

midquote changes on net trading activities, including net trading frequency (buy-initiated minus 

sell-initiated), net trading volume, proportion of buy-initiated frequency (net frequency divided 

by total frequency) and buy-/sell-initiated trading frequency. Unreported results show similar 

patterns. The price impacts of these trading variables are significantly positive and greater for 

just-off-the-runs across all regressions.  

We further run regressions using signed trade (volume) and controlling the effects of other 

trading variables, including time interval between two consecutive trades and order imbalance. 

Chordia, Roll, and Subrahmanyam (2002) suggest that order imbalance is an important indicator 

of one-side trading pressure that impacts prices. Dufour and Engle (2000) show that time 

duration between trades contains information for asset prices and the price impact increases as 

time duration shortens. To account for these effects, we run the following regressions on signed 

trade (volume) with an off-the-run dummy and control variables by pooling on- and just-off-the-

run data:  

 y𝑖,𝑡 = α + 𝛽1𝑥𝑖,𝑡 + 𝛽2(𝐷𝑖,𝑡
𝑜𝑓𝑓

∗ 𝑥𝑖,𝑡)                                                 

+ 𝛽3𝑇𝐼𝑖,𝑡 + 𝛽4𝑂𝐼𝑖,𝑡 + ∑ 𝜌𝑘

5

𝑘=1

y𝑖,𝑡−𝑘 + ∑ 𝜃𝑘

5

𝑘=1

𝑥𝑖,𝑡−𝑘,  

(4) 

where 𝑦𝑖,𝑡 = log (
𝑝𝑖,𝑡

𝑝𝑖,𝑡−1
), p can be midquotes or trading prices, 𝑥𝑖,𝑡 is either signed trade or signed 

volume (in $mil.), 𝑇𝐼𝑖,𝑡 is square root of the time interval between two consecutive trades (in 

hours), and 𝑂𝐼𝑖,𝑡 is logarithm of absolute cumulative order imbalance (in $mil.). 



13 
 

Results in Table IV show that the relation between midquote (price) changes and signed trade 

(signed volume) is positive, and this relation is more positive for just-off-the-run bonds. All 

coefficients are highly significant. The adjusted R2 values are much higher than those reported in 

Table III, suggesting that the model specification with signed trades (volume) and other trading 

variables (order imbalance and time interval between trades) has higher explanatory power for 

transaction price changes.   

[Insert Table IV here] 

Overall, empirical evidence strongly supports the prediction of search-based models that the 

impacts of trading activity on prices are larger for illiquid just-off-the-run bonds. This finding is 

robust to different model specifications and controls for various microstructure variables. 

D. The Effect of News Announcement 

Macroeconomic news plays an important role in moving prices in the Treasury market (see 

Balduzzi, Elton and Green, 2001; Green, 2004). To examine the effect of search frictions in 

different information environments, we divide whole sample into two subgroups by days with 

and without macroeconomic announcement. The news announcement information is collected 

from Bloomberg. We focus on news announcements at 8:30 a.m. ET and the same types of news 

announcement as in Green (2004).  

[Insert Figure 2 here] 

Figure 2 plots the intraday pattern of trading frequency, trading volume, bid-ask spreads, and 

return volatility over the interval of 8:00-9:30 a.m. ET. For just-off-the-runs, all four variables 

show a similar pattern for news and no-news days. However, for on-the-runs, there are notable 

differences between news (solid lines) and no-news days (dash lines). Trading frequency and 

volume jump right after 8:30 a.m. and then gradually taper off, indicating that trades in the on-

the-run market respond strongly to macroeconomic news. In addition, there is a spike for bid-ask 

spreads and return volatility around 8:30 a.m. on news days. 

We report t tests for the differences in trading volume on news and no-news days in Table 

IV. For on-the-run notes, the volume difference is most significant at the interval of 8:30-9:00, 

followed by the interval between 9:00-9:30, but it is insignificant at the interval of 8:00-8:30. On 

the other hand, we find no significant differences in trading volume for just off-the-run notes 

across all time intervals. Thus, there is no evidence that volume is significantly higher on news 

day than on other days for off-the-runs.  
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To see if the effect of news announcement on volume differs by security type, we perform 

the difference-in-difference tests. That is, we test whether the difference between news and no-

news volume is significantly different between on- and just-off-the-run notes or not. Results 

show significant differences between on- and just-off-the-run notes at the 8:30-9:00 and 9:00-

9:30 intervals. Unreported results show a similar differential pattern between on- and just-off-

the-runs for trading frequency, return volatility, bid-ask spreads, and market depth. Results 

suggest that trading variables of on-the-run securities respond more to news announcements. 

[Insert Table V here] 

An important issue is how prices respond to new information. A market has better price 

discovery if information is impounded into prices through trades in a more efficient and timely 

fashion. To estimate the information component of Treasury trades, we apply the model of 

Madhavan, Richardson, and Roomans (1997, hereafter MRR),5 which provides a framework to 

measure different components of security price changes associated with private and public 

information, liquidity, and market microstructure noise. In this model, the information 

component of price changes reflects revisions in beliefs when new information arrives. New 

information comes from two sources: innovations in order flows and unanticipated public 

information. Specifically, price changes are characterized by the following process (see MRR, 

1997): 

 ∆𝑃𝑡 = 𝑃𝑡 − 𝑃𝑡−1 = (+ 𝜃)𝑥𝑡 + (+ 𝜌𝜃)𝑥𝑡−1 + 𝑒𝑡 (5) 

where ∆𝑃𝑡 is the price change between two consecutive transactions at time t and t-1, 𝑥𝑡 is order 

flow with value equal to 1 if the trade is buy-initiated and -1 if sell-initiated,  represents the 

compensation for providing liquidity, 𝜃  captures the permanent price change associated with 

asymmetric information, and 𝜌 is the autocorrelation coefficient of order flows 𝑥𝑡 and 𝑥𝑡−1. We 

estimate 𝜃 at half-hour trading intervals surrounding 8:30 a.m. for news and no-news days, that 

is, 

 ∆𝑃𝑡 = 𝑃𝑡 − 𝑃𝑡−1 = (
𝑘

+ 𝜃𝑘)𝐷𝑘,𝑡𝑥𝑡 − (
𝑘

+ 𝜌𝑘𝜃𝑘)𝐷𝑘,𝑡−1𝑥𝑡−1 + 𝑒𝑡 (6) 

where k can be N (No news), B (days with news at half-hour interval before news release, i.e., 

8:00-8:30a.m.), A1 (days with news at half-hour interval after news release, i.e., 8:30-9:00), and 

A2 (days with news and one hour after news release, i.e., 9:00-9:30). 𝐷𝑘 = 1 if a trade-type is k 

                                                      
5 Green (2004) uses the same model to examine the information content of trades. 
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and 𝐷𝑘 = 0, otherwise. 

Let  

 v𝑡 = 𝑥𝑡 − 𝜌𝑘𝐷𝑘,𝑡𝑥𝑡−1, (7) 

 𝜇𝑡 = ∆𝑃𝑡 − (
𝑘

+ 𝜃𝑘)𝐷𝑘𝑥𝑡 + (
𝑘

+ 𝜌𝑘𝜃𝑘)𝐷𝑘𝑥𝑡−1, (8) 

and 𝛼 be a constant vector; then the moment conditions used for GMM estimation can be written 

as  

 

𝐸

[
 
 
 

v𝑡𝐷𝑘,𝑡−1𝑥𝑡−1

𝜇𝑡 − 𝛼
(𝜇𝑡 − 𝛼)𝐷𝑘,𝑡−1𝑥𝑡−1

(𝜇𝑡 − 𝛼)𝐷𝑘,𝑡𝑥𝑡 ]
 
 
 
= 0. 

(9) 

From Figure 2 and Table V, one would expect that news announcement has a greater impact 

on the information component of on-the-run trades than that of just-off-the-runs. The news 

announcement has a powerful effect on trading frequency, volume, bid-ask spreads, and return 

volatility of on-the-runs but has little impact on those of off-the-runs. This pattern suggests that 

trading variables of on-the-run should contain more information.  

The result of GMM estimation in Table VI confirms this conjecture. When there is no news 

announcement, 𝜃 is flat or decreases slightly from 8:00 to 9:30 for on-the-run notes. For just-off-

the-runs, we only estimate the 𝜃 value for the whole 8:00-9:30 interval as observations are not 

sufficient to obtain reliable estimates for each half-hour interval. On news days, 𝜃 at the 8:00-

8:30 interval before the morning news announcement is similar to that on no-news days. 

However, immediately after the news announcement, the 𝜃 value jumps for on-the-run issues at 

the 8:30-9:00 interval. The difference in the 𝜃 values between news and no-new days at the 8:30-

9:00 interval is 0.13 for 2-year, 0.17 for 5-year, and 0.14 for 10-year on-the-run notes, all 

significant at the one percent level. By contrast, 𝜃 is relatively flat for just-off-the-run issues over 

the trading intervals on news days. The difference in the 𝜃 values between news and no-news 

days is insignificant for all just-off-the-run notes. This discrepancy suggests that off-the-run 

bond investors do not respond to macroeconomic announcements or they are inattentive to news.  

Another interesting finding is that the differences in the 𝜃 values between news and no-news 

days are quite small and statistically insignificant at the 8:00-8:30 and 9:00-9:30 intervals even 

for on-the-run issues. Results suggest that the information-based trading occurs primarily at the 

new announcement interval, 8:30-9:00 a.m. For just-off-the-runs, there are no significant 
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differences in the 𝜃 values across all trading intervals. This finding is consistent with previous 

studies that information-based trading concentrates in the on-the-run segment of the Treasury 

market.  

[Insert Table VI here] 

E. Speed of Adjustment to New Equilibrium 

The intraday pattern in Figure 2 suggests that trading responds more quickly to 

macroeconomic movements in the on-the-run market than in the off-the-run market. High 

volume and trading frequency of on-the-run securities is expected to enhance efficacy of price 

discovery. The sensitivity of trading to announcements also implies that when new information is 

released, prices of on-the-run notes are likely to converge to the new equilibrium value more 

quickly than those of just-off-the-run notes. To investigate this possibility, we employ the 

following partial adjustment model to measure the price-adjustment speed for on- and just-off-

the-run bonds: 

 𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1 = 𝜆(𝑝𝑖,𝑡
∗ − 𝑝𝑖,𝑡−1), 0 < 𝜆 ≤ 1, (10) 

where  

𝑝𝑖,𝑡 = the close price of bond i on day t, 

𝑝𝑖,𝑡
∗  = the latent equilibrium value of bond i on day t, 

𝜆 is the speed-of-adjustment coefficient and the term in parentheses captures the deviation from 

the equilibrium. The value of adjustment coefficient is between zero and one, indicating that the 

change in observed prices is generally only a fraction of the change in the equilibrium value. 

When 𝜆 is equal to zero, prices are not responding to changes in fundamentals at all, and when 𝜆 

is equal to one, the price response to the change in the equilibrium value is instantaneous. 

As the latent equilibrium price 𝑝𝑖,𝑡
∗  is not observed, we estimate it from observable 

instrumental variables,  

 𝑝𝑖,𝑡
∗ = α + ∑ 𝛽𝑘 𝑥𝑘,𝑖,𝑡

𝑛
𝑘=1 + 𝜀𝑖,𝑡, (11) 

where xk, k = 1, 2 … n, denotes kth instrumental variable for the equilibrium value of bonds. 

Combining (10) and (11), we have  

 𝑝𝑖,𝑡 = αλ + (1 − λ)𝑝𝑖,𝑡−1 + ∑(𝛽𝑘𝜆) 𝑥𝑘,𝑖,𝑡

𝑛

𝑘=1

+ 𝜉𝑖,𝑡. (12) 

Based on the term structure model, we employ coupon rates, matched Treasury market yields at 
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time t from the Federal Reserve Bank, and time to maturity as the instrumental variables for the 

latent fundamental value. Microstructure theory suggests that information is assimilated into 

prices through trading, and since informed traders focus on liquid on-the-run securities (see 

Brandt and Kavajecz, 2004), the speed of adjustment (𝜆) to information should be higher for on-

the-runs when new information arrives.  

Using (12), we examine the difference in the speed of price adjustment between on- and just-

off-the-runs. For each just-off-the-run note, we match the trading observations over the auction 

event window by an on-the-run note with the same maturity to construct two price series over the 

same horizon. We employ the Newton-Gauss nonlinear regression to estimate 𝜆 for on- and off-

the-runs, respectively.  

Table VII reports the results of nonlinear regressions. As shown, the speed of adjustment for 

on-the-runs is greater than that for just-off-the-runs across all notes. The differences are all 

significant at the 5% level. Results show that on-the-run prices respond more quickly to changes 

in the equilibrium value of the bond than off-the-run prices.  Moreover, the speed-of-adjustment 

coefficient of on-the-runs is higher on news announcement days. On the days with 

macroeconomic announcement, the price of on-the-runs responds to news much more quickly 

than that of off-the-runs. As shown in Table VII, the difference in the speed of adjustment 

widens on news days between the two types of securities. These differences are again significant 

at the 5% level. The adjustment coefficients for on-the-runs are economically close to one and 

have relatively small t-statistics associated with the deviation from unity. Test statistics (omitted 

for brevity) show that the adjustment coefficients are insignificantly different from one for 2- and 

5-year on-the-runs whereas they are all significantly less than one for off-the-runs. Results show 

that prices of on-the-run securities respond very quickly to changes in fundamentals associated 

with macroeconomic announcement while off-the-run prices adjust sluggishly. This finding 

suggests that trading and search frictions slow the adjustment of off-the-run prices to new 

information. It also implies that frictions likely impede price discovery and lower information 

efficiency in the off-the-run market. 

[Insert Table VII here] 

F. Informativeness of Trades 

The preceding analysis shows that the differential price dynamics between on- and just-off-

the-runs are driven mainly by the difference in search and trading frictions between two markets. 
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The impact of macroeconomic news announcement on prices is much stronger for on-the-run 

securities than off-the-runs, and trading in the on-the-run market reacts more quickly to news. 

These findings imply that trades of on-the-runs will be more informative than those of off-the-

runs. As such, the efficacy of price discovery process is expected to be higher for the on-the-run 

market. 

To see if this is indeed the case, we use the method suggested by Hasbrouck (1991b) (see 

Appendix) to calculate a measure of information content of trades, denoted as  𝑅𝑤
2 . For 

convenience, we refer to this informativeness measure as the information share which measures 

the proportion of the variance in the random walk component of the bond price that is 

attributable to trades. Consider 𝑌𝑡  =  [𝑟𝑡 , 𝑥𝑡
1, 𝑥𝑡

0, 𝑥𝑡
2]′ where 𝑟𝑡 = Treasury returns, 𝑥𝑡

0= trade 

sign, 𝑥𝑡
1= signed volume, and 𝑥𝑡

2= signed volume-square. Let 𝑌𝑡 follow a VAR(p) model (𝐴0 −

𝐴1 𝐿 − 𝐴2 𝐿2 − ⋯𝐴𝑝 𝐿𝑝  )𝑌𝑡 = 
𝑡

 where 𝐴𝑖 is the autoregressive (AR) coefficient at lag i (see 

Appendix for details). For 𝜂𝑡  = [𝑣1𝑡 , 𝑣2𝑡]′, 𝑣1𝑡 is the return innovation and 𝑣2𝑡 is a 3 by 1 vector 

corresponding to trade-related innovations. The variance of 𝑣1𝑡 is 𝜎1
2, the covariance matrix of 

𝑣2𝑡  is Ω, and 𝑣1𝑡  and 𝑣2𝑡  are uncorrelated. Under the stationarity assumption, 𝑌𝑡 has an 

VMA(∞) representation:  

𝑌𝑡 = (𝐼 + 𝛩1 𝐿 + 𝛩2 𝐿2 + 𝛩3 𝐿3 + ⋯)𝐴0
−1

𝑡
= (𝛩0

∗ + 𝛩1
∗𝐿 + 𝛩2

∗𝐿2 + 𝛩3
∗𝐿3 + ⋯)

𝑡
 (13) 

where 𝛩0
∗ = 𝐴0

−1  and 𝛩𝑖
∗ = 𝛩𝑖 𝐴0

−1. The (1,1)th element in 𝛩𝑖
∗ gives 𝑎𝑖

∗, and the (1, i=2,3,4)th 

elements in 𝛩𝑖
∗ give the vector 𝑏𝑖

∗. The information share is measured by 𝑅𝑤
2  from Hasbrouck’s 

(1991b) Proposition 1. Specifically, 𝑅𝑤
2 =

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜 +(1+∑ 𝑎𝑖
∗)2𝜎1

2∞
𝑖=1

 , where the numerator 

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜  captures the contribution of trades to total return variance, or the ultimate 

effect (cumulative impulse responses) of a trade shock on returns.  

Table VIII reports the estimate of 𝑅𝑤
2  for the same note which started as the on-the-run issue, 

went off the run (or just off the run), and then became more off the run. Results clearly indicate 

that the information content of trades is highest for on-the-runs.  As shown, the information share 

measure 𝑅𝑤
2  drops markedly immediately after a Treasury issue goes off the run, at least by 70 

percent for all cases. It continues to decline as the issue becomes more off the run.6 More 

                                                      
6 Just-off-the-run notes are defined as 1-auction period away from issuance and more-off-the-run notes are i-auction 

period away where i ranges from 2 to 5. 
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specifically, the information share is 31% for 2- notes, 36% for 5-year notes and 27% for 10-year 

notes when they are on the run. Immediately after going off the run, the information share 

reduces to 9%, 4%, and 2% for 2-, 5-, and 10-year notes, respectively and eventually it drops to 

6%, 3%, and 0.4% when these notes are more off the run or farther away from the original 

auction day.  

The information share estimates are for the same note which goes through different stages in 

the auction cycle. Since the only change is the note’s seasonedness, the differences in the 

information share are attributed to the increase in search frictions as a Treasury issue goes off the 

run. Results show that search and trading frictions significantly reduce the informativeness of 

trades and lower the efficacy of price discovery. 

[Insert Table VIII here] 

 

III. Market Cointegration 

The analysis above shows that when a Treasury note goes off the run, search frictions 

increase, liquidity decreases, and price discovery becomes less efficacious. An important 

question that naturally arises is whether the markets for on-the-runs and off-the-runs are 

segmented in the presence of search frictions. To answer the question, we construct the time-

series data for on-the-run notes and period(i)-off-the-run notes, where i = 1, 2,…5, represents the 

number of auctions away. A higher i indicates that a Treasury note is more off the run. The six 

time series for notes with different auction periods are lined up by the dates surrounding the 

auction event.  

We first regress yields of on-the-run notes (Y𝑜𝑛) on yields of period(i)-off-the-run notes 

(Yoff(𝑖)), i.e., 𝑌𝑜𝑛 = 𝑏0  +  𝑏1𝑌𝑜𝑓𝑓(𝑖), to provide a generic picture for the relation between the two 

yield series.7 On a given trading day, if the price of on-the-run notes is exactly same as that of 

period(i)-off-the-run note, 𝑏0 will be zero and 𝑏1 will be equal to one. Alternatively, if Yoff(𝑖) 

behaves different from Y𝑜𝑛, 𝑏1 will deviate from one. In the special case that 𝑏1 is equal to one, 

minus 𝑏0 represents average on-/off-the-run yield spreads, i.e., yields of period(i)-off-the-runs 

                                                      
7 Yields of on-the-runs are adjusted to make their time to maturity same as that of period(i)-off-the-runs. Longer 

maturity of on-the-runs comes up with maturity premium and therefore, there are two components of yield spreads, 

liquidity premium and maturity premium. To better study the liquidity effects, we deduct maturity premium from 

yields of on-the-runs by fitting yield curves with quasi-cubic hermite spline function, which is the methodology used 

by U.S. Department of The Treasury. 
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minus those of on-the-runs.  

Panel A of Table IX reports results of the ordinary least squares (OLS) regression. Results 

show that 𝑏1  is very close to 1 in all cases and 𝑏0 becomes more negative as the period(i) 

increases. This finding suggests that prices of on-the-run and period(i)-off-the-run notes comove 

with each other but the on-/off-the-run spread increases when a note becomes more off the run. 

We next present formal tests for market cointegration. In cointegration analysis, the unit root 

test, Johansen’s maximum eigenvalue test for the number of cointegration vector, and the vector 

error-correction model (VECM) estimation are applied sequentially. Since cointegration analysis 

concerns if a linear combination of Y𝑜𝑛 and Yoff(𝑖) is stationary, we apply the unit root (UR) test 

and Johansen’s max eigenvalue test first. A large p-value in the unit root test indicates that the 

null hypothesis of unit root cannot be rejected, which means the time-series data are non-

stationary. Having established that both Y𝑜𝑛 and Yoff(𝑖) are I(1) non-stationary, we then check the 

number of cointegration vectors between them.  

The Johansen’s max eigenvalue test is a sequential test. First, we test the null hypothesis 

H(0) that there is no cointegration vector versus the alternative hypothesis that there is at least 

one. Failure to reject H(0) means there is no common implicit equilibrium yield (price) between 

on-the-run and period(i)-off-the-run markets. If H(0) is rejected, we next test the null hypothesis 

H(1) that there is one cointegration vector versus the alternative that there are more than one. In 

our empirical analysis, H(0) is rejected at 1% for on-the-runs and all period(i)-off-the-runs, and 

H(1) cannot be rejected under all cases. This finding suggests that there is only one shared 

common equilibrium yield between on-the-run and period(i)-off-the-run markets, or there exists 

only one cointegration vector.  

After establishing that Y𝑜𝑛 and Yoff(𝑖) are cointegrated, we use VECM to examine the price 

dynamics of the on-the-run and period(i)-off-the-run markets. Consider the two markets with 

bond yields denoted as two series 𝑍𝑡 = (𝑌𝑜𝑛,𝑡, 𝑌𝑜𝑓𝑓(𝑖),𝑡)′ where both series are cointegrated I(1) 

sharing a common equilibrium yield. The error-correction term of the cointegrated I(1) yields 

series is 𝑧𝑡 = 𝑐 + 𝛽′𝑍𝑡 = 𝑐 + 𝑌𝑜𝑛,𝑡 + 𝛽2𝑌𝑜𝑓𝑓(𝑖),𝑡  with the normalized cointegration vector 𝛽 =

(1, 𝛽2)′ where c is a constant introduced to capture the equilibrium spread between on- and off-

the-run yields due to illiquidity associated with search frictions in the off-the-run market that 

induces a price discount. The VECM then is expressed as 
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∆𝑍𝑡 =  𝛼(𝑐 + 𝑌𝑜𝑛,𝑡−1 + 𝛽2𝑌𝑜𝑓𝑓(𝑖),𝑡−1) + 𝐵1∆𝑍𝑡−1 + 𝐵2∆𝑍𝑡−2 + ⋯+

𝐵𝑟−1∆𝑍𝑡−𝑟+1 + 𝑒𝑡 , 

 

(14) 

where = (𝛼𝑜𝑛, 𝛼𝑜𝑓𝑓(𝑖))′ , 𝐵𝑖 is the AR coefficient, and ∆ is the first difference operator. The error 

term 𝑒𝑡  is a zero-mean vector of serially uncorrelated innovations with a variance-covariance 

matrix Ω = (
𝜎𝑜𝑛

2 𝜎𝑜𝑛,𝑜𝑓𝑓(𝑖)

𝜎𝑜𝑓𝑓(𝑖),𝑜𝑛 𝜎𝑜𝑓𝑓(𝑖)
2 ). Specifically, 𝜎𝑜𝑛

2  and 𝜎𝑜𝑓𝑓(𝑖)
2  are the innovation variances of 

two yield series for on- and off-the-runs, and 𝜎𝑜𝑛,𝑜𝑓𝑓(𝑖) = 𝜎𝑜𝑓𝑓(𝑖),𝑜𝑛 = 𝜌𝜎𝑜𝑛𝜎𝑜𝑓𝑓(𝑖)  is the 

covariance where   is the correlation of innovations between the two markets.  

Intuitively, c is like -𝑏0 and 𝛽2 is like -𝑏1 in the OLS regression of on-the-run yields against 

period(i)-off-the-run yields. After taking the yield spread c into account, the error correction term 

𝑐 + 𝑌𝑜𝑛,𝑡−1 + 𝛽2𝑌𝑜𝑓𝑓(𝑖),𝑡−1 is supposed to be close to zero. If this term differs from zero at time t-

1, yield correction will take place and the correction usually occurs in the opposite direction at 

time t. For example, if 𝑐 + 𝑌𝑜𝑛,𝑡−1 + 𝛽2𝑌𝑜𝑓𝑓(𝑖),𝑡−1 > 0 at t-1, i.e., 𝑌𝑜𝑛,𝑡−1 is higher than expected 

(the price of on-the-runs is too low) or 𝑌𝑜𝑓𝑓(𝑖),𝑡−1 is lower than expected (the price of period(i)-

off-the-runs is too high), the yield in the on-the-run market will go down, represented by 

negative 𝛼𝑜𝑛 and that in period(i)-off-the-run markets will go up, with positive 𝛼𝑜𝑓𝑓(𝑖), and vice 

versa. Consequently, two yields will correct for the disequilibrium and converge to the common 

equilibrium yield. Moreover, the magnitude of 𝛼𝑜𝑛 (𝛼𝑜𝑓𝑓(𝑖)) in (14) captures the speed of yield 

correction when there exists a deviation from the equilibrium. A smaller absolute value of the 

speed not only means a slower correction but more importantly, suggests that the market has 

more price discovery. In the extreme case that 𝛼𝑜𝑛 = 0 and 𝛼𝑜𝑓𝑓(𝑖) ≠ 0, only period(i)-off-the-

run market corrects for the yields while the on-the-run market is considered as full reflection of 

information. In this case, the on-the-run market is credited for the entire amount of price 

discovery and the off-the-run market has no contribution to price discovery in the Treasury 

market. 

Panel B of Table IX reports the results of VECM estimation. As shown, -𝛽2 is very close to 

one and c becomes larger as i increases (i.e., more off the run), consistent with the results from 

the OLS regression. As Treasury notes become more off the run, the on-/off-the-run spread 

increases. This result is in line with the expectation that on-the-runs (off-the-runs) are priced 

higher (lower). However, the two markets are not segmented because bonds traded at these two 
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markets are tied to the implicit equilibrium price. This phenomenon is consistent with the 

equilibrium of the dynamic asset pricing model of Duffie, Gârleanu, and Pedersen (2005, 2007) 

with search frictions. This model suggests that in a steady-state equilibrium, assets with higher 

search frictions will be priced at a larger illiquidity discount that represents the present value of 

illiquidity risk premiums due to search frictions. The asset with no search frictions has an 

equilibrium price close to the perfect (frictionless) market price. In our case, the on-the-run note 

has almost no search frictions and its price is close to the perfect market equilibrium price. By 

contrast, the off-the-run note has search frictions, and its equilibrium price (yield) is lower 

(higher) than the on-the-run price by an illiquidity discount. As a Treasury note becomes more 

off the run, search frictions of the note are higher and its equilibrium price will be even lower or 

further deviates from the frictionless market equilibrium price.  

The correction parameter 𝛼𝑜𝑛  is mostly negative and 𝛼𝑜𝑓𝑓(𝑖) is all positive. Moreover, the 

magnitude of negative 𝛼𝑜𝑛 is small and mostly insignificant, which suggests that prices of on-

the-runs are close to the equilibrium value and does not need much correction. On the contrary, 

𝛼𝑜𝑓𝑓(𝑖) is all significantly positive, suggesting that yields (prices) of period(i)-off-the-runs go up 

(down) to approach to the equilibrium yield (price). In addition, 𝛼𝑜𝑓𝑓(𝑖) is much larger than 𝛼𝑜𝑛 

in absolute terms, suggesting that price correction takes place mostly in the off-the-run market 

and so price discovery is lower in this market. 

Overall, results strongly suggest that the on- and off-the-run markets are integrated. The on-

the-run market plays the price leadership role and its price reflects most information while it is 

mainly the off-the-run market that corrects for disequilibrium errors. In the dynamic equilibrium, 

prices are synchronous and the off-the-run security is priced below the on-the-run security with 

an illiquidity discount consistent with the prediction of the search-based model of Duffie, 

Gârleanu, and Pedersen (2007). 

[Insert Table IX here] 

 

IV. Conclusion 

Recent development in dynamic asset pricing modeling has shown that search frictions can 

significantly affect the temporal behavior and equilibrium of asset prices. Search frictions are 

particularly important for OTC markets without central market makers. This paper uses 

transaction data from the Treasury market to examine some of the important implications of the 
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search-based model. By exploiting the unique feature of Treasury auctions, we overcome the 

difficulty to separate the effects of liquidity and adverse selection.   

We find that in a market with search frictions, the relations of both volatility and bid-ask 

spreads with trading volume are positive and price impacts of trades are larger for illiquid off-

the-run Treasury notes. Macroeconomics announcement has little impact on the trading activity 

in the off-the-run market and the asymmetric information component of prices and the speed of 

price adjustment to the new equilibrium value are much lower for off-the-runs. These findings 

suggest that investors in the off-the-run market respond slowly or are less attentive to news. 

Moreover, we find that trades are more informative for on-the-run notes than for off-the-run 

notes and the former plays a price leadership role in the price discovery of the U.S. Treasury 

market.  

Despite high search frictions in the off-the-run market, we find strong evidence supporting 

the hypothesis that on- and off-the-run markets are integrated. However, in equilibrium, there is 

a positive yield spread between on- and off-the-run notes. The on-/off-the-run spread widens as a 

note becomes more off the run. This finding supports the prediction of the search-based model 

that the price discount of bonds is positively related to search frictions. As a bond is farther away 

from the auction day, it becomes less liquid and has greater search frictions. The price 

differences between on- and off-the-run notes reflect the discount of illiquidity associated with 

search and trading frictions in a frictional market.  

Our findings improve the understanding for the role of search frictions in asset pricing and 

price dynamics. We show that search frictions not only have an effect on asset prices but also 

affect market quality and price discovery in financial markets. Search frictions reduce the 

efficacy of price discovery and lower market quality in terms of liquidity and volatility. While 

search frictions increase trading costs and result in asset price discount, it does not appear to 

cause disintegration in the Treasury bond market. Empirical evidence shows that even though 

search frictions have profound effects on the microstructure of the Treasury market and pricing 

of securities with different seasonedness, the markets of on- and off-the-runs remain integrated.  
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Appendix 

Computation of Hasbrouck’s (1991b) information share measure 𝑹𝒘
𝟐  

In this appendix, we first discuss the procedure for computing Hasbrouck’s (1991b) 

information share measure 𝑅𝑤
2  for the bivariate case with return and signed volume, and then the 

extension to four variables case with return, signed volume, signed trade, and signed volume 

square. 

Let  𝑌𝑡 = (𝑟𝑡 , 𝑥𝑡 )  be a bivariate vector consists of return 𝑟𝑡  and signed volume 𝑥𝑡 . 

Following Hasbrouck’s (1991) equation (4), let 𝑌𝑡  follows a vector autoregressive (VAR) 

model of order p in the form: 

                          (𝐴0 − 𝐴1 𝐿 − 𝐴2 𝐿2 − ⋯𝐴𝑝 𝐿𝑝  )𝑌𝑡 = 
𝑡

                                                   (A1) 

where  𝐴0 = [
1  − 𝑏0

0       1
]  which implies 𝑟𝑡  is related to the contemporaneous 𝑥𝑡  but not the 

other way around. The AR coefficients are  𝐴𝑖 = [
𝑎𝑖    𝑏𝑖

  𝑐𝑖     𝑑𝑖    
] , and L is the back-shift operator. 

The error terms 
𝑡

= [
𝑣1𝑡

𝑣2𝑡

] has diagonal covariance matrix with the diagonal elements being 𝜎1
2 

and 𝜎2
2. Such orthogonal structure is possible due to the contemporaneous structure 𝐴0 .  

Denote  𝐴(𝐿) = 𝐴0 − 𝐴1 𝐿 − 𝐴2 𝐿2 − ⋯𝐴𝑝 𝐿𝑝   as the AR polynomial, which is a 2 by 2 

matrix with diagonal elements 𝐴11(𝐿) = 1 − ∑ 𝑎𝑖 𝐿𝑖𝑝
𝑖=1 , 𝐴22(𝐿) = 1 − ∑ 𝑑𝑖 𝐿𝑖𝑝

𝑖=1  and off-

diagonal elements 𝐴12(𝐿) = −𝑏0 − ∑ 𝑏𝑖 𝐿𝑖 ,𝑝
𝑖=1 and 𝐴21(𝐿) = −∑ 𝑐𝑖 𝐿𝑖 .𝑝

𝑖=1 Under the 

stationarity assumption, it follows that the VAR(p) in (A1) has a vector moving-average (VMA) 

representation: 

                                  𝑌𝑡 = 𝐴−1(𝐿)
𝑡

                                                                                       (A2) 

 Or alternatively,                                     

                                𝑑𝑒𝑡(𝐿)𝑌𝑡 = [
𝐴22(𝐿)     − 𝐴12(𝐿)

 
−𝐴21(𝐿)       𝐴11(𝐿)

]
𝑡

                                                     (A3)                             

where  𝑑𝑒𝑡(𝐿) = 𝐴11(𝐿) ∗ 𝐴22(𝐿) − 𝐴12(𝐿) ∗ 𝐴21(𝐿) is the determinant of A(L), and note that it 

admits an AR(2p) model form. This implies that the first element 𝑟𝑡 follows: 

                                𝑟𝑡 =
(1−∑ 𝑑𝑖 𝐿𝑖𝑝

𝑖=1 )

det (𝐿)
𝑣1𝑡  + 

(𝑏0+∑ 𝑏𝑖 𝐿𝑖 )
𝑝
𝑖=1

det (𝐿)
𝑣2𝑡                                               (A4) 

                                      = (1 + ∑ 𝑎𝑖
∗∞

𝑖=1 𝐿𝑖)𝑣1,𝑡  + (𝑏0
∗ + ∑ 𝑏𝑖

∗∞
𝑖=1 𝐿𝑖)𝑣2,𝑡                                  (A5)                                          
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The first term corresponds to 𝑣1𝑡 in (A4) has an ARMA(2p, p) form and hence has a MA(∞) 

representation under the stationarity assumption for the AR(2p) term; and we can derive the 

corresponding MA( ∞) coefficients 𝑎𝑖
∗ from the ARMA (2p, p) coefficients in the first term in 

(A4). Also, we can derive 𝑏𝑖
∗. Equation (A5) above is the Hasbrouck’s (1991b) equation (5). 

Similarly, the second element 𝑥𝑡 follows: 

                           𝑥𝑡 =
∑ 𝑐𝑖 𝐿𝑖𝑝

𝑖=1

det (𝐿)
𝑣1𝑡  + 

(1−∑ 𝑎𝑖 𝐿𝑖 )
𝑝
𝑖=1

det (𝐿)
𝑣2𝑡                                                            (A6) 

                                 = (∑ 𝑐𝑖
∗∞

𝑖=1 𝐿𝑖)𝑣1,𝑡  + (1 + ∑ 𝑑𝑖
∗∞

𝑖=1 𝐿𝑖)𝑣2,𝑡                                                 (A7)                                          

Equation (A7) is Hasbrouck’s (1991b) equation (5), and we can derive the corresponding MA( 

∞) coefficients 𝑐𝑖
∗ and  𝑑𝑖

∗ from their respective ARMA (2p, p) coefficients in (A6). 

Finally, Hasbrouck’s 𝑅𝑤
2  is given in Hasbrouck’s (1991b) Proposition 1 as: 

𝑅𝑤
2 =

(∑ 𝑏𝑖
∗)2𝜎2

2∞
𝑖=𝑜

(∑ 𝑏𝑖
∗)2𝜎2

2∞
𝑖=𝑜 +(1+∑ 𝑎𝑖

∗)2𝜎1
2∞

𝑖=1

                                                      (A8)  

It is important to note that equation (A5) expresses how return is being related to its own shock 

and the trade volume’s shock. This representation is the key to derive the impulse response 

function and the forecast error variance decomposition in structural analysis of VAR model. For 

Hasbrouck’s 𝑅𝑤
2  , the numerator in (A8) captures the variance of the cumulative effect (sum of 

all impulse responses) on returns upon a unit shock in trading volume. As such,  𝑅𝑤
2  measures 

the contribution of trades to the total return variance, or the ultimate effect of a trade shock on 

returns.  

In empirical analysis, we use a VAR model of order 3 and use 20 terms in the MA( ∞) to 

compute the 𝑅𝑤
2 . We also try VAR(5) and 30 terms in the MA representation, and the conclusion 

remains broadly the same. Furthermore, to better measure the impact of trade, we follow 

Hasbrouck (1991b) to introduce trade sign and signed volume-squared in addition to signed 

volume alone to estimate 𝑅𝑤
2 . 

Specifically, in the above setting, 𝑟𝑡  remains to be the return, and  𝑥𝑡  is now a 3 by 1 vector 

[𝑥𝑡
1, 𝑥𝑡

0, 𝑥𝑡
2]′ where 𝑥𝑡

0= trade sign, 𝑥𝑡
1= signed volume, and 𝑥𝑡

2= signed volume-square. The AR 

coefficient  𝐴𝑖  becomes a 4 by 4 matrix with the dimensions of its elements changed 

accordingly, and  𝜎2
2 becomes a 3 by 3 covariance matrix Ω. The 𝑅𝑤

2  is now in the form of 

equation (7) in Hasbrouck’s (1991b) Proposition 1: 



26 
 

𝑅𝑤
2 =

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜 +(1+∑ 𝑎𝑖
∗)2𝜎1

2∞
𝑖=1

                                                      (A9) 

In principle, one can derive the MA form for 𝑟𝑡 just like the 2 variable case. However, the 

derivation of the inverse of a 4 by 4 matrix 𝐴(𝐿), with each element being a polynomial in 

𝐿𝑖 where i = 0, 1, …, p is very tedious. Rather than taking this approach, we use simulation to 

compute the 𝑅𝑤
2 .  

First, recall the VAR model of 𝑌𝑡  = [𝑟𝑡 , 𝑥𝑡
1, 𝑥𝑡

0, 𝑥𝑡
2]′  is (𝐴0 − 𝐴1 𝐿 − 𝐴2 𝐿2 −

⋯𝐴𝑝 𝐿𝑝  )𝑌𝑡 = 
𝑡

. For the error term 
𝑡

= [
𝑣1𝑡

𝑣2𝑡

] , 𝑣1𝑡 and 𝑣2𝑡 are uncorrelated where 𝑣1𝑡 has 

variance 𝜎1
2 and 𝑣2𝑡 has covariance Ω. Since 𝑣1𝑡 and 𝑣2𝑡  are uncorrelated, we can estimate the  

coefficient  𝐴𝑖  separately by first running a regression of 𝑟𝑡  on 𝑟𝑡−𝑗  (j = 1, 2,…, p) and 

𝑥𝑡−𝑖
1 , 𝑥𝑡−𝑖

0 , 𝑥𝑡−𝑖
2  (i = 0, 1, 2,…, p) and then running a VAR(p) for [𝑥𝑡

1, 𝑥𝑡
0, 𝑥𝑡

2]′. The resulting 

coefficients of these models give the corresponding elements of 𝐴𝑖 , and their residual variances 

give 𝜎1
2 and Ω, respectively. 

Then, we can express the VAR model in the usual form:   

   (𝐼 − 𝐴0
−1𝐴1 𝐿 − 𝐴0

−1𝐴2 𝐿2 − ⋯−𝐴0
−1𝐴𝑝 𝐿𝑝  )𝑌𝑡 = 𝐴0

−1
𝑡

                             (A10) 

Under the stationarity assumption, 𝑌𝑡 has an VMA(∞)  representation: 

                          𝑌𝑡 = (𝐼 + 𝛩1 𝐿 + 𝛩2 𝐿2 + 𝛩3 𝐿3 + ⋯ ) 𝐴0
−1

𝑡
                                                

                                = (𝛩0
∗ + 𝛩1

∗𝐿 + 𝛩2
∗𝐿2 + 𝛩3

∗𝐿3 + ⋯ ) 
𝑡

                                             (A11)  

where 𝛩0
∗ = 𝐴0

−1 and 𝛩𝑖
∗ = 𝛩𝑖 𝐴0

−1. Thus, the (1,1)th elements in  𝛩𝑖
∗ gives the 𝑎𝑖

∗, and the (1, 

i=2,3,4)th elements in  𝛩𝑖
∗ give the vector 𝑏𝑖

∗.   

In empirical investigation, we simulate 𝑌𝑡 according to (A10) with p = 3 and based on the 

estimated coefficients we obtain the VMA coefficients 𝛩𝑖  and in turn the  𝛩𝑖
∗ in (A11), and 

finally, Hasbrouck’s 𝑅𝑤
2  in (A9). In our simulations, we simulate 1.2 million observations, and 

the simulation is repeated 3 times. The computed 𝑅𝑤
2  displays high similarity, and the average 

𝑅𝑤
2  is reported in Table VIII. 
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Figure 1. Daily trading activity for 2-, 5-, and 10-year notes over the auction event window. This figure shows 

trading activity of Treasury notes within the auction event window, i.e., (-20, 19) for 2-year notes and (-60, 59) for 

5- and 10-year notes. The horizontal-axis denotes the date relative to the day of going off the run, where the negative 

number denotes days before going off the run, positive number denotes days after, and time 0 denotes one day after 

the auction. The vertical-axis denotes different trading variables. In all charts, the left vertical axis indicates value 

for 5- and 10-year notes while the right vertical axis indicates value for 2-year notes. Frequency and volume are the 

daily number of trades and daily total volume. Size is the daily average size of transactions. Bid-ask spreads are 

calculated as quoted ask price minus quoted bid price divided by midquote. Depth equals to the sum of quoted ask 

size and bid size divided by 2. Order imbalance (OI) is the absolute value of net trading volume (buy-initiated 

volume minus sell-initiated volume) scaled by total volume. Standard deviation (Std) is calculated using log 

transaction price changes. 
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Figure 2. Intraday patterns on news and no-news days. This figure plots average trading frequency, trading 

volume ($mil), bid-ask spreads (bps), and return volatility (bps) for 5-year notes by minute from 8:00 to 9:30 a.m. 

The sample period is from January 1992 to February 2008. Figures for off-the-run notes are plotted using a 10-

minute moving average, except for return volatility which cannot be calculated by minute due to low frequency of 

trades.  
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Table I 

Descriptive statistics of on- and off-the-run U.S. Treasury notes 

This table provides descriptive statistics for 2-, 5- and 10-year notes based on daily data. A Treasury note is said to 

be “on-the-run” until the next note with the same maturity is issued. All variables are computed from trading data 

between 7:30-17:00 (Eastern Time) and averaged to obtain daily measures over the event window, i.e., (-20, 19) for 

2-year notes and (-60, 59) for 5- and 10-year notes. The sample covers the period from January 1992 to December 

2008. Frequency and volume are the daily number of trades and total volume. Size is the average size of transactions 

over the day. Bid-ask spreads are calculated as quoted ask price minus quoted bid price divided by the midquote. 

Depth equals to quoted ask size plus quoted bid size divided by two. Order imbalance is the absolute value of net 

trading volume (buy-initiated volume minus sell-initiated volume) divided by total volume. Standard deviation of 

price changes is based on log transaction price changes. Standard errors of mean are in parentheses. 

  

       

 
Frequency Volume Size Spreads Depth 

Order 

Imbalance 
Std 

  
 

($billion) ($million) (bps) ($million) (%) (bps) 

All notes        

On-the-runs 419.48 3.64 10.41 1.59 10.72 13.80 1.46 

 

(271.65) (2.32) (6.40) (1.14) (6.03) (15.90) (2.64) 

Just-off-the-runs 23.49 0.17 6.01 3.10 3.36 44.21 4.80 

 

(24.46) (0.23) (4.65) (2.31) (2.82) (32.05) (8.15) 

2-Year 

       On-the-runs 263.45 3.51 15.40 0.98 15.09 16.56 0.92 

 

(184.16) (2.48) (6.82) (0.69) (6.23) (16.55) (1.54) 

Just-off-the-runs 33.57 0.31 8.75 1.55 4.87 37.56 1.82 

 

(27.18) (0.31) (5.71) (0.81) (3.74) (29.05) (3.33) 

5-Year 

       On-the-runs 571.09 4.46 7.55 1.59 8.39 9.89 1.42 

 

(268.25) (2.28) (1.38) (0.89) (2.40) (8.97) (1.86) 

Just-off-the-runs 19.00 0.10 4.89 3.47 2.71 46.91 5.55 

 

(21.42) (0.14) (3.16) (2.12) (1.61) (32.54) (8.40) 

10-Year 

       On-the-runs 495.65 2.79 5.34 2.70 5.72 14.09 2.47 

 

(259.96) (1.61) (1.38) (1.26) (2.15) (20.27) (4.30) 

Just-off-the-runs 17.91 0.08 4.13 5.68 1.98 48.95 9.31 

 

(21.91) (0.11) (4.06) (2.91) (2.29) (34.31) (12.11) 
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Table II 

Daily regressions of volatility and bid-ask spreads on volume 

The dependent variable in Panel A, volatility (in bps), is measured by intraday standard deviation of transaction 

price changes in each day t for bond i, and the dependent variable in Panel B, bid-ask spreads (in bps), is measured 

by quoted ask price minus quoted bid price divided by matched midquote averaged for each day. The independent 

variable is daily trading volume (in $bil). Both regressions include an interactive term with off-the-run dummy 

(denoted as 𝐷𝑜𝑓𝑓), controlling for the bond-specific fixed effect,  

Volatility𝑖,𝑡 = 𝛼 + 𝛽1𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 + 𝛽2(𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 ∗ 𝐷𝑖,𝑡
𝑜𝑓𝑓

) + 𝜀𝑖,𝑡 

Spreads𝑖,𝑡 = 𝑎 + 𝑏1𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 + 𝑏2(𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 ∗ 𝐷𝑖,𝑡
𝑜𝑓𝑓

) + 𝜖𝑖,𝑡 

The coefficient of off-the-run bonds is the sum of 𝛽1and 𝛽2 or 𝑏1 and 𝑏2. Heteroskedasticity-consistent t-value is in 

parentheses.  The data observations are over the event window of going off-the-run, which is (-20, 19) for 2-year 

notes, and (-60, 59) for 5- and 10-year notes from January 1992 to December 2008. 

                

 

Volatility 

 

Bid-ask spreads 

 

2-Year 5-Year 10-Year 

 

2-Year 5-Year 10-Year 

Volume -0.162 -0.505 -1.756 

 

-0.122 -0.197 -0.727 

 

(-9.354) (-15.970) (-16.195) 

 

(-27.168) (-20.166) (-26.095) 

Volume*𝐷𝑜𝑓𝑓  0.348 2.765 2.912 

 

0.186 1.396 1.784 

 

(2.102) (4.454) (1.055) 

 

(4.309) (6.833) (2.625) 

Adj. R2 0.029 0.112 0.117 

 

0.185 0.180  0.279 
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Table III 

Impacts of trading activity on absolute midquote changes 

This table presents trades impacts on absolute midquote changes, trade-by-trade (Panel A) and over 5- and 30-

minute intervals (Panel B). The dependent variable is log absolute midquote changes (in bps), i.e., 𝑦𝑖,𝑡 =

|log (
𝑀𝑖𝑑𝑖,𝑡

𝑀𝑖𝑑𝑖,𝑡−1
)|, where t denotes tth interval and 𝑀𝑖𝑑𝑖,𝑡 denotes the midquote at interval t for bond i. The independent 

variable in Panel A is trading size of each transaction (in $mil). The independent variables in Panel B are total 

trading frequency (Freq), total trading volume (Volume, in $10mil), and average trade size (Size, in $mil) at 5- and 

30-minute intervals, respectively. All regressions include an interactive term with off-the-run dummy (denoted as 

𝐷𝑜𝑓𝑓). The coefficient of off-the-run bonds is the sum of coefficients of the independent variable and the interactive 

term. Heteroskedasticity-consistent t-value is in parentheses.  The data observations are within the auction event 

window, which is (-20, 19) for 2-year notes, and (-60, 59) for 5- and 10-year notes from January 1992 to December 

2008. In panel A, column 1 reports results of estimation for the contemporaneous relation and column 2 includes 5 

lagged variables in the regression.  

 

 Panel A: Trade-by-trade 

 
Absolute midquote changes 

 
 2-Year 5-Year 10-Year 

  (1) (2) (1) (2) (1) (2) 

Trade size  -0.001 -0.001 -0.005 -0.002 -0.003 0.000 

 

 (-16.221) (-6.351) (-40.694) (-2.525) (-12.934) (0.004) 

Trade size*𝐷𝑜𝑓𝑓   0.013 0.005 0.097 0.040 0.123 0.052 

 

 (28.941) (9.478) (25.496) (12.188) (11.757) (6.657) 

 

 

      Adj. R2  0.004 0.132 0.017 0.103 0.005 0.065 

Control for 

Lagged effect 

 

No Yes No Yes No Yes 
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  Panel B: 5- and 30-minute intervals 

  5-minute intervals  30-minute intervals 

  

(1) (2) (3) (4) (5) 

 

(1) (2) (3) (4) (5) 

2-Year 

Freq 0.015     0.017 0.015   0.010 

  

0.008 0.010 

 

(40.271) 

  

(36.405) (41.167) 

 

(26.473) 

  

(19.006) (26.860) 

Freq*𝐷𝑜𝑓𝑓 0.069 

  

0.083 0.062 

 

0.037 

  

0.038 0.032 

 

(29.056) 

  

(27.872) (22.810) 

 

(17.136) 

  

(18.067) (13.010) 

Volume 

 

0.003 

 

-0.001 

   

0.005 

 

0.001 

 

  

(15.107) 

 

(-6.102) 

   

(18.914) 

 

(2.335) 

 Volume*

𝐷𝑜𝑓𝑓 
 

0.018 

 

-0.014 

   

0.015 

 

-0.009 

 

  

(12.470) 

 

(-8.091) 

   

(9.866) 

 

(-4.710) 

 Size 

  

-0.001 

 

-0.001 

   

-0.001 

 

-0.002 

   

(-19.565) 

 

(-13.341) 

   

(-4.874) 

 

(-5.335) 

Size*𝐷𝑜𝑓𝑓 

  

0.004 

 

0.001 

   

0.002 

 

0.003 

   

(18.463) 

 

(5.479) 

   

(3.826) 

 

(4.482) 

Adj. R2 0.012 0.002 0.003 0.013 0.013 

 

0.055 0.038 0.000 0.056 0.056 

5-Year 

Freq 0.022     0.035 0.025   0.012     0.009 0.019 

 

(2.270) 

  

(2.179) (2.328) 

 

(21.848) 

  

(11.530) (29.262) 

Freq*𝐷𝑜𝑓𝑓 0.288 

  

0.320 0.225 

 

0.120 

  

0.138 0.045 

 

(4.265) 

  

(3.917) (3.736) 

 

(20.606) 

  

(28.506) (6.262) 

Volume 

 

0.003 

 

-0.016 

   

0.010 

 

0.004 

 

  

(0.540) 

 

(-1.424) 

   

(17.123) 

 

(4.740) 

 Volume*

𝐷𝑜𝑓𝑓 

 

0.151 

 

-0.056 

   

0.089 

 

-0.055 

 

  

(3.508) 

 

(-1.273) 

   

(10.729) 

 

(-9.191) 

 Size 

  

-0.016 

 

-0.012 

   

-0.030 

 

-0.074 

   

(-3.972) 

 

(-2.559) 

   

(-11.161) 

 

(-16.457) 

Size*𝐷𝑜𝑓𝑓 

  

0.036 

 

0.019 

   

0.037 

 

0.087 

   

(4.376) 

 

(2.306) 

   

(13.947) 

 

(18.870) 

Adj. R2 0.012 0.004 0.002 0.005 0.006 

 

0.043 0.029 0.005 0.044 0.065 

10-Year 

Freq 0.054     0.063 0.055   0.031     0.034 0.036 

 

(50.998) 

  

(45.459) (52.349) 

 

(26.412) 

  

(23.229) (29.611) 

Freq*𝐷𝑜𝑓𝑓 0.460 

  

0.556 0.395 

 

0.244 

  

0.246 0.133 

 

(17.660) 

  

(16.521) (13.012) 

 

(10.620) 

  

(9.675) (5.129) 

Volume 

 

0.036 

 

-0.015 

   

0.036 

 

-0.010 

 

  

(29.769) 

 

(-10.421) 

   

(21.476) 

 

(-4.497) 

 Volume*

𝐷𝑜𝑓𝑓 

 

0.291 

 

-0.201 

   

0.220 

 

-0.113 

 

  

(9.074) 

 

(-5.988) 

   

(6.861) 

 

(-2.518) 

 Size 

  

-0.012 

 

-0.011 

   

-0.036 

 

-0.101 

   

(-16.630) 

 

(-15.817) 

   

(-5.779) 

 

(-15.105) 

Size*𝐷𝑜𝑓𝑓 

  

0.065 

 

0.028 

   

0.056 

 

0.145 

   

(11.337) 

 

(4.505) 

   

(5.179) 

 

(10.627) 

Adj. R2 0.037 0.010 0.006 0.038 0.038 

 

0.099 0.063 0.002 0.101 0.113 
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Table IV 

Impacts of signed trade and volume on midquote and price changes 
This table summarizes trade-by-trade impacts of signed trade and volume on midquote changes. The dependent 

variable is log midquote changes (in bps), i.e., 𝑦𝑖,𝑡 = log (
𝑀𝑖𝑑𝑖,𝑡

𝑀𝑖𝑑𝑖,𝑡−1
), where 𝑀𝑖𝑑𝑖,𝑡 denotes matched midquote at t for 

bond i. The independent variable is signed trade (+1/-1 denotes buy-/sell-initiated trade) or signed volume (sign 

times volume, in $mil) with control variables, including time interval between trades (in hours), order imbalance (in 

$mil) and five lagged variables. Time interval is square root of time interval between two consecutive trades and 

order imbalance is logarithm value of absolute cumulative volume difference between buy- and sell-initiated trades. 

All regressions include an interactive term with off-the-run dummy (denoted as 𝐷𝑜𝑓𝑓). The coefficient of off-the-run 

bonds is the sum of coefficients of the independent variable and the interactive term. Heteroskedasticity-consistent t-

value is in parentheses. The data observations are within the auction window, which is (-20, 19) for 2-year notes, 

and (-60, 59) for 5- and 10-year notes from January 1992 to December 2008.  

 

  

Signed trade as regressor 
 

Signed volume as regressor 

 

  Model 1 Model 2 Model 3 Model 4 
 

Model 1 Model 2 Model 3 Model 4 

    Midquote Trading price   Midquote Trading price 

2-Year 

Sign 0.122 0.123 0.149 0.150 

 

0.004 0.004 0.003 0.003 

 

(88.845) (89.478) (69.848) (70.067) (70.450) (70.502) (37.319) (37.298) 

Sign*𝐷𝑜𝑓𝑓 0.133 0.130 0.157 0.156 0.004 0.004 0.004 0.004 

 

(15.119) (14.748) (11.420) (11.233) (9.894) (9.753) (4.436) (4.372) 

Time 

Interval 

 

0.142 

 

0.154 

 

0.117 

 

0.130 

  

(8.123) 

 

(5.917) 

 

(6.640) 

 

(4.970) 

Order 

Imbalance 

 

0.003 

 

0.013 

 

0.003 

 

0.015 

  

(3.329) 

 

(9.360) 

 

(3.728) 

 

(9.750) 

Adj.R2 0.171 0.172 0.187 0.187 0.133 0.133 0.169 0.169 

5-Year 

Sign 0.292 0.292 0.384 0.387 

  

0.016 0.016 0.019 0.019 

 

(147.766) (149.289) (139.786) (140.164) (58.276) (58.019) (55.531) (56.066) 

Sign*𝐷𝑜𝑓𝑓 0.424 0.417 0.495 0.506 0.021 0.021 0.034 0.034 

 

(12.141) (11.850) (13.842) (14.162) (3.094) (3.017) (7.790) (7.773) 

Time 

Interval 

 

0.239 

 

0.266 

 

0.203 

 

0.229 

  

(4.025) 

 

(3.824) 

 

(3.401) 

 

(3.291) 

Order 

Imbalance 

 

0.001 

 

0.001 

 

0.002 

 

0.002 

  

(0.307) 

 

(0.387) 

 

(0.771) 

 

(0.850) 

Adj.R2 0.163 0.164 0.208 0.209 0.133 0.134 0.184 0.185 

10-Year 

Sign 0.479 0.480 0.543 0.544 

  

0.031 0.031 0.032 0.032 

 

(142.408) (142.123) (99.219) (99.153) (87.522) (87.437) (41.487) (41.438) 

Sign*𝐷𝑜𝑓𝑓 0.242 0.239 0.739 0.731 0.019 0.019 0.051 0.050 

 

(2.412) (2.364) (8.221) (8.050) (2.301) (2.331) (4.375) (4.299) 

Time 

Interval 

 

0.335 

 

0.330 

 

0.213 

 

0.243 

  

(5.780) 

 

(2.706) 

 

(3.673) 

 

(1.975) 

Order 

Imbalance 

 

0.001 

 

0.004 

 

0.001 

 

0.004 

  

(0.602) 

 

(1.817) 

 

(0.348) 

 

(1.862) 

Adj.R2 0.172 0.172 0.140 0.141 0.093 0.093 0.100 0.101 
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Table V 

Trading volume surrounding macroeconomics news announcement 

The table shows the average volume difference between days with and without news for on- and off-the-run notes at 

each half-hour interval. The mean difference is reported and t-value is in parentheses. The null hypothesis (H0) of t-

test is that the difference between two means of trading volume is equal to zero.  *, **, *** indicate the significance 

of rejecting H0 at the 10%, 5% and 1% levels, respectively.  

 

  

Volume (news) vs. Volume (no-news) 

  

8:00-8:30 

 

8:30-9:00 

 

9:00-9:30 

    Difference   Difference   Difference 

All notes On-the-runs 17.727 

 

260.893*** 

 

156.171*** 

  

(1.378) 

 

(12.337) 

 

(10.681) 

 

Just-off-the-runs 39.935 

 

8.536 

 

-17.561 

  

(1.207) 

 

(0.218) 

 

(-0.411) 

 

On - Off -27.335 

 

249.046*** 

 

173.732*** 

  

(-0.789) 

 

(5.650) 

 

(3.784) 

2-Year On-the-runs 0.557 

 

89.847*** 

 

70.800*** 

  

(0.057) 

 

(6.016) 

 

(6.318) 

 

Just-off-the-runs 38.983 

 

14.235 

 

3.392 

  

(1.376) 

 

(0.704) 

 

(0.171) 

 

On - Off -38.426 

 

75.612*** 

 

67.408** 

  

(-1.331) 

 

(2.829) 

 

(2.859) 

5-Year On-the-runs 10.462 

 

106.742*** 

 

56.121*** 

  

(1.756) 

 

(9.245) 

 

(12.585) 

 

Just-off-the-runs 4.619 

 

12.356 

 

-14.624 

  

(0.376) 

 

(0.949) 

 

(-1.179) 

 

On - Off 5.844 

 

94.386*** 

 

70.745*** 

  

(0.430) 

 

(5.917) 

 

(5.747) 

10-Year On-the-runs 6.707 

 

64.304*** 

 

29.250*** 

  

(1.128) 

 

(7.704) 

 

(4.480) 

 

Just-off-the-runs -3.667 

 

-18.055 

 

-6.329 

  

(-0.312) 

 

(-0.578) 

 

(-0.175) 

 

On - Off 5.247 

 

79.048*** 

 

35.579 

    (0.402)   (2.481)   (0.943) 
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Table VI 

The asymmetric information component of trades surrounding macroeconomic news announcement 

This table reports GMM estimates of the asymmetric information component of trades () of the MRR model for 5-year on- and just-off-the-run notes between 

8:00 and 9:30 am ET.  We report estimates for days with and without news. For no-news days, the first column shows the asymmetric information component of 

on- and just-off-the-run notes during the 90-minute interval of 8:00-9:30 and the next three columns report estimates for on-the-run notes for three intervals: 

8:00-8:30, 8:30-9:00, and 9:00-9:30, respectively. For news days, we report estimates for each 30-minute interval. Diff is the difference in  for each 30-minute 

interval on news days and the   reported in the first column (8:00-9:30 intreval). The  estimate of just-off-the-runs is scaled by average price changes to make it 

comparable with the estimate of on-the-runs. t-value is in parentheses. *** indicates that the   difference between days with and without news is significant at 

the 1% level. 

 

  
No-news days 

 
News days 

    

Overall 

8:00-

9:30 

8:00-

8:30 

8:30-

9:00 

9:00-

9:30  

8:00-

8:30 

Diff 

(News – 

No-news) 

8:30-

9:00 

Diff 

(News – 

No-news) 

9:00-

9:30 

Diff 

(News – 

No-news) 

2-Year On-the-runs 0.31 0.33 0.33 0.27 
 

0.28 -0.03 0.45 0.13*** 0.31 0.00 

  

(51.61) (24.61) (29.48) (36.51) 
 

(17.62) (-1.84) (41.11) (14.26) (38.66) (-0.56) 

 

Just-off-the-runs 0.18 
    

0.15 -0.03 0.21 0.03 0.19 0.01 

  

(5.89) 
    

(8.15) (-0.72) (15.46) (0.91) (16.86) (0.25) 

5-Year On-the-runs 0.63 0.70 0.65 0.56 
 

0.61 -0.02 0.80 0.17*** 0.63 0.00 

  

(63.42) (29.37) (39.35) (38.92) 
 

(35.94) (-0.97) (58.62) (13.03) (65.21) (-0.21) 

 

Just-off-the-runs 0.32 
    

0.29 -0.04 0.34 0.02 0.33 0.00 

  

(5.05) 
    

(1.96) (-0.23) (12.54) (0.30) (15.46) (0.03) 

10-Year On-the-runs 0.94 1.08 0.94 0.87 
 

0.97 0.02 1.08 0.14*** 0.91 -0.03 

  

(68.82) (38.80) (39.93) (42.42) 
 

(36.91) (0.71) (47.18) (6.91) (59.53) (-1.93) 

 

Just-off-the-runs 0.64 
    

0.60 -0.04 0.62 -0.02 0.38 -0.27 

    (3.34)         (2.99) (-0.16) (5.43) (-0.12) (6.09) (-1.37) 
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Table VII 

Speed of adjustment in daily U.S. Treasury prices 

This table reports estimates of the speed of adjustment to the new equilibrium price for on- and just-off-the-run 

notes. To estimate the adjustment speed (𝜆), we use the partial adjustment model 𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1 = 𝜆(𝑝𝑖,𝑡
∗ − 𝑝𝑖,𝑡−1), 0 <

𝜆 ≤ 1, where 𝑝𝑖,𝑡= close price of bond i on day t and 𝑝𝑖,𝑡
∗  = latent true value of bond i on day t. As 𝑝𝑖,𝑡

∗  is unobserved, 

we estimate it as a function of three observable variables: bond coupon, yield to maturity, and time to maturity, i.e., 

𝑝𝑖,𝑡
∗ = α + ∑ 𝛽𝑘 𝑥𝑘,𝑖,𝑡

𝑛
𝑘=1 + 𝜀𝑖,𝑡,. Combining two equations, we have 𝑝𝑖,𝑡 = αλ + (1 − λ)𝑝𝑖,𝑡−1 + ∑ (𝛽𝑘𝜆) 𝑥𝑘,𝑖,𝑡

𝑛
𝑘=1 +

𝜉𝑖,𝑡. Newton-Gauss nonlinear regression is used to estimate 𝜆, and t-value is in parentheses. We use the data within 

the auction event window, which is (-20, 19) for 2-year notes, and (-60, 59) for 5- and 10-year notes in the 

regression. The sample period is from January 1992 to December 2008.  

              

 

2-Year 5-Year 10-Year 

  On-the-runs 

Just-off-

the-runs On-the-runs 

Just-off-

the-runs On-the-runs 

Just-off-

the-runs 

Panel A: Full sample 

      Speed of Adjustment 0.973 0.725 0.970 0.911 0.888 0.825 

 

(107.474) (48.750) (104.045) (82.926) (51.697) (44.653) 

Adj.R2 0.990 0.985 0.990 0.996 0.997 0.998 

       Panel B: Days with news announcement 

    Speed of Adjustment 0.982 0.761 0.980 0.913 0.907 0.819 

 

(87.339) (47.017) (77.547) (66.868) (43.637) (33.249) 

Adj.R2 0.990 0.988 0.989 0.996 0.997 0.998 
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Table VIII 

Informativeness of Trades 

 
This table summarizes the estimates of informativeness of trades for on-the-runs, just-off-the-runs, and more off-the-

runs, respectively. Consider 𝑌𝑡  =  [𝑟𝑡 , 𝑥𝑡
1, 𝑥𝑡

0, 𝑥𝑡
2]′ where 𝑟𝑡 = returns, 𝑥𝑡

0= trade sign, 𝑥𝑡
1= signed volume, and 𝑥𝑡

2= 

signed volume-square. Let 𝑌𝑡 follows a VAR(p) model (𝐴0 − 𝐴1 𝐿 − 𝐴2 𝐿2 − ⋯𝐴𝑝 𝐿
𝑝

 )𝑌𝑡 = 
𝑡

. For the error 

term 𝜂𝑡  =  [𝑣1𝑡 , 𝑣2𝑡]′ , 𝑣1𝑡 corresponds to the return’s innovation and 𝑣2𝑡 is a 3 by 1 vector corresponds to trade 

related innovations. 𝑣1𝑡  has variance 𝜎1
2  and 𝑣2𝑡  has covariance Ω, and 𝑣1𝑡  and 𝑣2𝑡  are uncorrelated. Under 

stationary assumption, 𝑌𝑡 has an VMA (∞)  representation 𝑌𝑡 = (𝐼 + 𝛩1 𝐿 + 𝛩2 𝐿2 + 𝛩3 𝐿3 + ⋯ ) 𝐴0
−1

𝑡
 or                                          

= (𝛩0
∗ + 𝛩1

∗𝐿 + 𝛩2
∗𝐿2 + 𝛩3

∗𝐿3 + ⋯ ) 
𝑡

  where 𝛩0
∗ = 𝐴0

−1  and 𝛩𝑖
∗ = 𝛩𝑖 𝐴0

−1. The (1,1)th element in  𝛩𝑖
∗ gives the 

𝑎𝑖
∗ and the (1, i=2,3,4)th elements in  𝛩𝑖

∗ give the vector 𝑏𝑖
∗. The informativeness of trades is presented by 𝑅𝑤

2  from 

Hasbrouck’s (1991b) Proposition 1. Specifically, 𝑅𝑤
2 =

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜 +(1+∑ 𝑎𝑖
∗)2𝜎1

2∞
𝑖=1

 where the numerator 

(∑ 𝑏𝑖
∗)𝛺∞

𝑖=𝑜 (∑ 𝑏𝑖
∗′)∞

𝑖=𝑜  captures the contribution of trades to the total return variance. The computation details are 

given in the Appendix. 

 

 

𝑅𝑤
2  2-Year 5-Year 10-Year 

On-the-runs 0.312 0.358 0.265 

    Just-off-the-runs 0.090 0.041 0.021 

    More off-the-runs 0.063 0.035 0.004 
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Table IX 

Cointegration Analysis 

This table reports the results of cointegration analysis between on-the-run and period(i)-off-the-run markets, where i 

denotes the number of auctions away from issuance, ranging from 1 to 5.  Time-series data of daily close yields for 

three notes with different auction periods are constructed. The OLS regression in Panel A is Y𝑜𝑛  =  𝑏0  +  𝑏1 ∗
Yoff(𝑖) and t-value is given in parentheses. The UR Test in Panel B is the augmented Dickey-Fuller unit root test with 

null hypothesis (H(0)) of the existence of unit root. p-value of the on-the-runs (upper value) and period(i)-off-the-

runs (lower value) is reported. Max eigenvalue test is Johansen’s maximum eigenvalue test for the number of 

cointegration vector. This is a sequential test. First, we test the null hypothesis H(0) that there is no cointegration 

vector versus the alternative that there is at least one. Failure to reject H(0) means there is no common implicit 

equilibrium yield between on-the-run and period(i) off-the-run markets. If H(0) is rejected, we test the null 

hypothesis H(1) that there is one cointegration vector versus the alternative that there are two vectors. ** means 

rejecting the null hypothesis at 1% significance level. 

Panel A: Least squares regression of on-the-run yields on period(i)-off-the-run yields 

 Period (i)  
2-Year 5-Year 10-Year 

    b0 b1 b0 b1 b0 b1 

 

1 

 

-0.033 1.001 -0.060 1.008 -0.076 1.004 

   

(-6.287) (1049.038) (-10.397) (1059.018) (-5.934) (520.727) 

 

2 

 

-0.053 1.002 -0.025 1.002 -0.064 0.997 

   

(-8.680) (903.771) (-3.703) (902.662) (-2.883) (296.438) 

 

3 

 

-0.066 1.001 -0.026 1.001 -0.062 0.994 

   

(-9.370) (779.368) (-2.982) (706.290) (-2.343) (248.981) 

 

4 

 

-0.073 0.999 -0.022 1.000 -0.126 1.003 

   

(-7.957) (597.104) (-2.377) (659.323) (-7.068) (373.942) 

 

5 

 

-0.096 1.000 -0.063 1.006 -0.175 1.009 

      (-10.360) (586.867) (-5.875) (569.091) (-9.414) (359.322) 

Panel B: VECM estimation 

  Period (i) c β2 αon αoff(i) UR test Max eigenvalue test 

2-Year 

1 0.044 -1.004 -0.170 0.229 0.488          H(0)**       

 

(3.627) (-462.592) (-3.829) (4.777) 0.597          H(1)            

2 0.064 -1.004 -0.097 0.069 0.498          H(0)**       

 

(2.504) (-217.546) (-2.692) (1.929) 0.544          H(1)          

3 0.081 -1.004 -0.084 0.058 0.551          H(0)**   

 

(2.648) (-180.222) (-2.928) (2.060) 0.568          H(1)         

4 0.103 -1.005 -0.045 0.111 0.554          H(0)**     

 

(2.683) (-143.360) (-1.996) (4.711) 0.578          H(1)            

5 0.100 -1.001 -0.038 0.040 0.557          H(0)**       

 

(1.619) (-88.051) (-1.821) (2.062) 0.644          H(1)             

        

5-Year 

1 -0.025 -0.996 -0.033 0.242 0.724          H(0)**       

 

(-1.602) (-387.778) (-0.295) (2.115) 0.667          H(1)            

2 0.013 -1.000 -0.050 0.306 0.682          H(0)**       

 

(0.834) (-394.086) (-0.603) (3.790) 0.680          H(1)          

3 0.017 -1.000 -0.112 0.237 0.660          H(0)**   

 

(0.747) (-275.561) (-1.567) (3.442) 0.653          H(1)         

4 0.017 -1.000 -0.092 0.313 0.674          H(0)**     

 

(0.776) (-273.841) (-1.651) (5.441) 0.737          H(1)            

5 0.058 -1.005 -0.142 0.104 0.640          H(0)**       

 

(1.852) (-194.863) (-2.652) (2.132) 0.697          H(1)             

         

10-Year 

1 0.134 -1.011 -0.059 0.054 0.656          H(0)**       

 

(2.048) (-104.078) (-0.960) (0.913) 0.590          H(1)            

2 0.109 -1.004 -0.021 0.131 0.568          H(0)**       

 

(1.783) (-110.224) (-0.504) (3.303) 0.578          H(1)          

3 0.108 -1.002 -0.006 0.143 0.588          H(0)**   

 

(1.881) (-116.727) (-0.162) (4.010) 0.582          H(1)         

4 0.177 -1.011 0.005 0.163 0.565          H(0)**     

 

(3.290) (-125.493) (0.146) (4.907) 0.567          H(1)            

5 0.201 -1.013 -0.007 0.128 0.615          H(0)**       

 

(3.465) (-115.978) (-0.242) (4.380) 0.614          H(1)             

 


