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Abstract
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1 Introduction

We document that the implied volatility (IV) skew of S&P 500 index puts, defined as the

IV of out-of-the money (OTM) puts minus the IV of at-the-money (ATM) puts is non-

decreasing in the disaster index and risk-neutral (RN) variance. We dub this the “skew

response puzzle” because, as we demonstrate, a broad class of widely used no-arbitrage

models for pricing options that allow for stochastic volatility and price jumps implies that

the skew is a decreasing function of the disaster index and RN variance.

We address the skew response puzzle by departing from the class of no-arbitrage models of

pricing options and endogenizing the supply and demand of index puts. The key departure

lies in recognizing that the principal writers of index puts are market makers who face credit

constraints which we model here as an exogenously imposed Value-at-Risk (VaR) constraint.

The model captures the scenario where risk neutral market makers write “overpriced” index

puts to maximize their expected profit, subject to their credit constraint, while risk averse

customers buy the index to maximize their expected utility and hedge their exposure to

downside risk by buying index puts. The key to the puzzle lies in recognizing that, as

the disaster risk and variance increase, customers demand more puts as insurance while

market makers become more credit-constrained in writing puts. The resulting increase in

the equilibrium price is more pronounced in OTM than in ATM puts because the credit

constraint is more sensitive to OTM than ATM puts. The IV skew becomes steeper, thereby

resolving the puzzle. Consistent with the data, the model also predicts that the skew is

increasing in the broker-dealers liability-to-asset (L/A) ratio.

We define the “net buy” by public customers of index options of given moneyness and

maturity in a month as the average of the daily executed total buy orders by public customers

(to open new positions or close existing ones) during the month minus their daily executed
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total sell orders. The net buy is the equilibrium quantity determined at the intersection of

the supply and demand curves, unlike some earlier literature that treats the net buy as a

proxy for demand.

The shift in the supply and demand for S&P 500 put options not only explains the IV

skew puzzle but also explains a novel set of observations about the net buy of puts which

challenge earlier models. In particular, these observations suggest that the demand pressure

hypothesis alone is insufficient to explain the net buy of puts. The supply shift by credit-

constrained market makers plays an important role in explaining the net buy of puts. Our

model provides implications regarding the net buy that are born out in the data.

The model and the data consistently imply that the net buy of puts by public customers

is decreasing in the RN variance and disaster index. The intuition is that, when the RN

variance and/or disaster index increase, public customers like to buy more puts as insurance

but market makers become more credit-constrained. That is, the supply curve shifts to the

left and the demand curve shifts to the right. The supply shift turns out to be the driving

factor in the decrease in the equilibrium net buy of puts.

We also address the model implications regarding the relationship between the net buy

of puts and their price. The model implies that the net buy of OTM and ATM puts is

decreasing in their price. The intuition is the same as above. Both the supply and demand

curves shift. The supply shift turns out to be the driving factor in the decrease in the

equilibrium net buy and the price increase of OTM puts. These implications are born out

in the data.

The model implies that the net buy of puts decreases as the market makers’ VaR constraint

becomes more severe. Consistent with this implication, we find that the net buy of puts is

decreasing in the broker-dealers liability-to-asset (L/A) ratio.
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The model implications regarding the relationship between the net buy and the IV skew of

puts are also consistent with the data. The data shows no significant relationship in general

except a decreasing relationship during the financial crisis. The model implies that the net

buy of OTM and ATM puts decreases with the IV skew when the RN variance is fixed and

we vary the disaster risk. The net buy of OTM puts increases with the skew when we fix

the disaster risk and vary the RN variance. The net buy of ATM puts may either increase

or decrease with the skew when we fix the disaster risk and vary the RN variance. Given

the correlation between the RN variance and disaster index, the relationship between the IV

skew and the net buy of OTM and ATM puts is complex.

Finally, we confirm the robustness of our results by constructing the net buy of OTM

and ATM options by using different ranges of moneyness and maturity; by de-trending the

net buy in different ways; by using the net buy of either only the public customers or both

the public customers and firms; and by studying the relation of the net buy with the RN

variance, disaster index, option prices, and IV skew for different sub-periods, before, during,

and after the financial crisis.

Our paper relates to the extensive literature on dealers and intermediaries’ credit con-

straints and funding liquidity in the form of VaR, margin, and leverage constraints. Rep-

resentative examples include Adrian and Shin (2014), Brunnermeier and Pedersen (2009),

Danielsson, Shin, and Zigrand (2004), Etula (2013), Gromb and Vayanos (2002), He and

Krishnamurthy (2013), Shleifer and Vishny (1997), and Thurner, Farmer, and Gaenakoplos

(2012). In particular, Etula (2013) modeled a commodities market with risk-averse pro-

ducers and consumers and risk-neutral broker-dealers who are subject to a VaR constraint.

He found empirical support for the prediction that the broker-dealers risk-bearing capacity

forecasts energy returns.

Specific to the pricing of options, this literature examines the extent to which traders’
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and intermediaries’ credit constraints and funding liquidity may explain difficulties with no-

arbitrage models of option pricing. In a prescient essay, Bates (2003) stated: “Relatively

few option market makers apparently have been writing crash insurance for a broad array of

money managers, which may pose institutional difficulties for the risk-sharing assumptions

underlying representative agent models. On the demand side, it is conceivable that especially

risk-averse money managers have been willing to buy crash insurance that never seems to

pay off.” Bollen and Whaley (2004) examined the relation between the net buying pressure

of index options and found that the IV of index options is directly related to the buying

pressure for index puts.

Gârleanu, Pedersen, and Poteshman (2009) introduced exogenous shifts in the demand

by public customers for index options. An exogenous positive shift in the demand for a

certain option increases its price because risk-averse market makers are unable to perfectly

hedge their inventories and their supply of options is less than perfectly elastic. In Section

6, we present empirical evidence that the net buy of both OTM and ATM S&P 500 puts

is decreasing in the respective put price, suggesting that the demand pressure hypothesis

alone does not explain the data. Whereas the Gârleanu et al. (2009) model does not address

the skew response puzzle, their Proposition 4 states that an exogenous positive shift in the

demand for a certain OTM put has a bigger pricing effect on the demand of deep OTM

puts than on slightly OTM puts, that is, the IV skew unambiguously becomes steeper with

higher net buy. In Section 6, we present empirical evidence that the IV skew is never

increasing in the net buy of puts and is actually decreasing during the financial crisis. These

considerations motivate the introduction of supply shifts, in addition to demand shifts, in

the options market.

Chen, Joslin, and Ni (2014) modeled the market makers’ risk aversion and credit con-

straints in reduced form as an increasing function of the disaster risk. Their model implies
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that the demand for crash insurance, proxied by the net buy of deep OTM puts, predicts

the return on the S&P 500 index. Our model significantly differs from that of Chen et al.

(2014). First, our model specifically addresses the supply and demand shifts of put options

across moneyness and addresses a comprehensive set of stylized facts regarding the implied

volatility skew and the net buy of puts. Second, we model the market makers’ credit con-

straint as a VaR constraint that is driven by both the disaster risk and variance, unlike the

credit constraint in the Chen et al. (2014) model that is driven by disaster risk alone.

Our paper also relates to the extensive literature on stochastic dominance violations by

option prices. Constantinides, Czerwonko, Jackwerth, and Perrakis (2011) and Constan-

tinides, Jackwerth, and Perrakis (2009) showed that OTM European calls on the S&P 500

index and OTM American calls on the S&P 500 index futures frequently imply stochastic

dominance violations: any risk averse investor who invests in a portfolio of the index and the

risk free asset increases his expected utility by writing OTM “overpriced” calls. By contrast,

these papers found that OTM puts on the S&P 500 index and the index futures rarely imply

stochastic dominance violations: a risk averse investor who invests in a portfolio of the index

and the risk free asset rarely increases his expected utility by writing OTM “overpriced”

puts. These findings motivate our focus on OTM puts, as opposed to OTM calls. In our pa-

per, we model investors as buyers, as opposed to sellers, of OTM puts to hedge the downside

risk of their investment in the market portfolio. This modelling choice is consistent with the

above findings on stochastic dominance.

Our paper also relates to the extensive literature on no-arbitrage option pricing mod-

els. Examples include Andresen, Benzoni, and Lund (2002), Andersen, Fusari, and Todorov

(2015a,b), Bakshi, Cao, and Chen (1997), Bates (2000, 2006), Broadie, Chernov, and Jo-

hannes (2007), Chernov, Gallant, Ghysels, and Tauchen (2003), Duffie, Pan, and Singleton

(2000), Eraker (2004), Eraker, Johannes, and Polson (2003), Heston (1993), Heston, Christof-
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fersen, and Jacobs (2009), Lian (2014), and Pan (2002).

Finally, our paper relates to the literature that addresses the cross-sectional variation

in index option returns. Examples include Buraschi and Jackwerth (2001), Cao and Huang

(2008), Carverhill, Dyrting, and Cheuk (2009), Constantinides, Jackwerth, and Savov (2013),

and Jones (2006). Specifically, Constantinides et al. (2013) demonstrated that any one of

crisis-related factors incorporating price jumps, volatility jumps, and liquidity, along with

the market, explains the cross-sectional variation in index option returns. These findings

motivate our focus on disaster risk and liquidity constraints in the form of VaR constraints.

The paper is organized as follows. In Section 2, we define the variables and describe the

data. In Section 3, we present the skew response puzzle. The model is stated in Section

4. In Section 5, we demonstrate that the model explains the IV skew puzzle. In Section

6, we discuss the model implications on the net buy by public customers and relate them

to the empirical evidence. In Section 7, we discuss extensions of the model and conclude.

Derivations are relegated to the appendix.

2 Definition of the Variables and Description of the

Data

2.1 Definition of the Variables

The Implied volatility (IV) is the Black-Scholes implied volatility. Moneyness is defined as

the ratio of the strike price to the index price, K/S. We compute the model-implied skew

as the difference between the IV of a one-month put with moneyness 0.85 and the IV of a

one-month ATM put. We compute the empirical skew from all ATM S&P 500 put options
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with moneyness 0.97-1.03 and maturity 15-60 days; and OTM puts with moneyness 0.8-0.9

and maturity 15-60 days. Each day, we first compute the average IV of ATM and OTM puts.

We then calculate the skew as the difference between the average IV of the OTM and ATM

put options. Finally, we average these slopes across all trading days of the given calendar

month.

The Risk Neutral (RN) Variance, also known as the squared VIX, is defined as in Britten-

Jones and Neuberger (2000):

RN V ariance =
2erT

T

[∫
K>S0

C(S0;K,T )

K2
dK +

∫
K≤S0

P (S0;K,T )

K2
dK

]
(1)

where S0 is the index price at the beginning of the month; K is the strike; T is one month;

C(S0;K,T ) is the European call price; P (S0;K,T ) is the European put price; and r is the

continuously-compounded risk free rate.

Bakshi, Kapadia, and Madan (2003) derived the price of a volatility contract as

2erT

T

[∫
K>S0

(1−K/S0)C(S0;K,T )

K2
dK +

∫
K≤S0

(1−K/S0)P (S0;K,T )

K2
dK

]
(2)

Du and Kapadia (2012) showed that this is a variance measure that is more inclusive of price

jumps than the RN variance.

We define the Disaster Index as in Du and Kapadia (2012):

Disaster Index

=
2erT

T

[∫
K>S0

(1−K/S0)C(S0;K,T )

K2
dK +

∫
K≤S0

(1−K/S0)P (S0;K,T )

K2
dK

]
+

2

T
(erT − 1− rT )− 1

T
EQ(ST/S0)−RN V ariance (3)
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We compute the RN variance and disaster index from available option prices. First, we

extract the B-S implied volatility from the B-S implied volatility surface at the two available

maturities closest to 30 calendar days. Cubic splines are applied in the moneyness dimension,

defined as strike price divided by stock price and ranging from 0.003 to 3, to interpolate the

B-S implied volatility for each moneyness of a fixed maturity. Therefore, the interpolated

implied volatility as a smooth function of moneyness is obtained for each of the two option

maturities. Next, for each moneyness in the previous step, we apply linear interpolation

using the B-S implied volatility of the two maturities to achieve the B-S implied volatility

at 30 days of maturity.

We define the model-implied net buy of puts as the model-implied number of puts purchased

by the customer at the beginning of the period. We construct our empirical measure of the

monthly net buy of S&P 500 put options by customers as follows. The daily net buy of a

given option on a given trading day is the sum of the open buy and close buy minus the sum

of open sell and close sell on that day by customers. We calculate the monthly net buy of

options for two moneyness ranges, OTM (0.8-0.9) and ATM (0.97-1.03), and maturity 15-60

days. We next compute the monthly net buy for a given target moneyness and maturity as

the average of the daily net buy across all trading days of the given calendar month of all

options with the targeted moneyness and maturity range. Our measure of the monthly net

buy is the de-trended net buy that is computed as the realized net buy of a certain category

of options, such as OTM puts, dividend by the total trading volume of put options by public

customers in this maturity category.

We also de-trended the net buy by using the total trading volume of all puts in the same

moneyness and maturity, or total call or puts at the same maturity or same moneyness

category, and obtained similar results, not reported in the paper. We also considered an

alternative definition of the net buy that includes the net buy by proprietary firms, in
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addition to the net buy by customers. The results remained virtually unchanged because

the net buy by firms is a small fraction of the total net buy and the results are not reported

in the paper.

2.2 Description of the Data

The data for computing the net buy is obtained from the Chicago Board Options Exchange

(CBOE) from the beginning of 1996 to the end of 2012. The data consists of a daily record of

traded contract volumes on open-buy, open-sell, close-buy, and close-sell for each option by

three types of public customers plus proprietary firms. The public customers include small,

medium, and large customers. We compute the net buy of each of these groups of agents as

the long interest minus the short interest of both open and close to trade. According to the

order size, an order size greater than 200 contracts is classified as orders of a large customer,

the order size between 101-200 contracts is classified as orders of a median customer, and

the order size less than 100 contracts is classified as the order of a small customer. Small

customers on S&P 500 options are not necessarily retail traders. Instead, Chen, Goslin,

and Ni (2014) showed that the small customers who sold deep OTM S&P 500 puts are

institutional traders.

Intra-day trades and bid-ask quotes of the S&P 500 options are obtained from the CBOE.

We select the last pair of bid-ask quotes at or before 14:45 CDT and match these quotes with

the tick-level index price at the same minute. We stop at 14:45 CDT because the market

closes at 15:15 CDT and we wish to avoid contamination related to last-minute trading. The

minute-level data of the S&P 500 index price is from Tick Data Inc. The recorded underlying

S&P 500 index price for each option is the index price at the same minute when the option

bid-ask quote is recorded. Therefore, the data is synchronous up to a minute. The dividend

yield of S&P 500 index is provided by OptionMetrics. For a given option, we extract the
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implied interest rate from the put-call parity as in Constantinides, Jackwerth, and Savov

(2013).

Our measure of the credit constraint of market makers is the ratio of liabilities-to-assets

(L/A) of broker-dealers obtained from the Federal Reserve’s Flow of Funds database which

reports quarterly aggregate values of financial assets and liabilities for U.S. security broker-

dealers.

In Table 1, we report summary statistics of the monthly net buy de-trended by the total

trading volume of puts from public customers, the monthly IV skew, the monthly IV, and

the quarterly L/A. The sample period is from January 1996 to December 2012. The mean

and median of the net buy of both OTM and ATM puts are positive. This is consistent with

the conventional view that the market makers are net sellers of S&P 500 index puts. The

autocorrelation of the monthly variables ranges from 0.32 to 0.86. The autocorrelation of

the quarterly L/A ratio is 0.98. In our regression analysis, the dependent variables are the

IV skew, and the de-trended net buy. We account for the autocorrelation of the monthly

dependent variables as in Newey-West (1987) with 15 lags. For the quarterly dependent

variable, we use 5 lags in applying the Newey-West (1987) correction.

[Table 1 here]

3 The Skew Response Puzzle

A broad class of widely used no-arbitrage models extends the original Black and Scholes

(1973) and Merton (1973) model of pricing options by allowing for stochastic volatility and

jumps in the price and volatility. The Bates (2006) model, a representative model in this
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class, is specified as follows in terms of the RN probability measure:

dlog(St) = (rt − qt −
Vt
2
− (λ0 + λ1Vt)µ)dt+

√
(Vt)dW1t + JtdNt (4)

dVt = k(θ − Vt)dt+ σ
√
VtdW2t (5)

where dlog(St) is the instantaneous stock market log return; rt is the risk free rate; qt is the

dividend yield; Vt is the instantaneous variance conditional upon no jumps; dW1t and dW2t

are Wiener processes with correlation ρ ; Nt is a Poisson counter with intensity λ0 + λ1Vt

for the incidence of jumps; and Jt ∼ N(µ, σ2
J) is a random Gaussian jump. The empirical

correlation between the disaster risk and the RN variance is around 0.96, which indicates

that a linear relationship between the disaster probability and RN variance is reasonable.

We estimate the model with daily S&P 500 call and put prices over the period 1996:Q1-

2012:Q4. The moneyness ranges from 0.85 to 1.15 and the maturity ranges from 15 to 360

days. We proxy the latent state variable Vt with the RN variance estimated from the cross-

section of S&P 500 options maturing in 30 days.1 We estimate the model by minimizing the

sum of squared errors of all options, where the error of one option is defined as the observed

IV minus the model-implied IV. The parameter estimates are σ = 0.27, λ0 = 2.89E − 9,

λ1 = 4.24, µ = −6.25, σJ = 14.99, κ = 0.038, θ = 0.95, ρ = −0.79. Since λ1 > 0, the model

has the plausible implication that the probability of disaster is increasing in the variance.

The parameter estimates are reported using a daily time interval and scaling the stock return

by 100, as is conventional in the time-series literature, such as Broadie et al. (2007), Eraker

(2002), and Lian (2014).

1We justify ex post the procedure of proxying the latent state variable Vt with the squared RN implied
volatility as follows. We use the point estimates of the parameters to calculate the model-implied option prices
at different values of the state variable Vt, calculate the RN implied volatility, and regress the RN implied
volatility against

√
Vt. The regression coefficient is 0.857 and the intercept is 0.00677, thereby justifying the

commonly-used estimation procedure of proxying the latent state variable
√
Vt with the squared RN implied

volatility.
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In figure 1, we display the IV skew as a function of the disaster index and the RN variance,

implied by the Bates (2006) model. The skew is decreasing in the RN variance. The flattening

skew is a common feature of this class of models. The intuition is that the distinction between

the IV of OTM puts and the ATM puts diminishes and the skew flattens as the RN variance

increases. The skew is decreasing also in the disaster index. If the RN variance were kept

constant, the IV skew would be increasing in the disaster risk. The reason that the IV skew

is decreasing in the disaster index is that in the Bates (2006) model the RN variance and

the disaster risk are perfectly positively correlated. The decreasing pattern indicates that

the disaster risk impacts the IV skew less than the RN variance does in the no-arbitrage

model. It would be unrealistic to construct a no-arbitrage model where the RN variance and

disaster risk are either uncorrelated or negatively correlated because, as figure 2 illustrates,

the RN variance and the disaster risk are strongly positively correlated in the data.

We also estimate the Bates (2006) model for the sub-periods before, during, and after

the 2008 crisis, and obtain the same pattern for the IV skew. We note that the regularities

displayed in figure 1 are invariant to assumptions about the price of volatility risk and

disaster risk because the Bates (2006) model is stated here in terms of only the risk neutral

probability measure without reference to the physical measure.

[Figures 1 and 2 here]

We verified similar results in other no-arbitrage models. The model in Andersen et al.

(2015a) is more flexible with a multifactor volatility process and jumps in price and volatility

processes. They modeled the jump intensity as being linear in the volatility as in Bates

(2006). Their model has similar implications: the IV skew is decreasing in both the disaster

index and the RN variance. Naturally, it remains an open question whether a plausible

no-arbitrage model exists that displays a non-decreasing IV skew as a function of either the

disaster index or the RN variance and also captures the strong positive correlation between
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the disaster index and the RN variance.

The puzzle is that the implications of the no-arbitrage model in figure 1 are inconsistent

with the empirical evidence. In figure 3 , we display the observed IV skew of S&P 500

options as a function of the RN variance and disaster index over the time period January

1996 to December 2012; before the financial crisis, January 1996 to November 2007; during

the crisis, December 2007 to June 2009; and after the crisis, July 2009 to December 2012.

The figure shows that the IV skew is non-decreasing in the disaster index and RN variance.

(See also the regression results in Table 2, discussed later on.) This observation motivates

us to propose a model for the pricing of puts that incorporates credit constraints faced by

market makers.

[Figure 3 here]

In the following sections, we address the skew response puzzle and the observed behavior

of the net buy by departing from the class of no-arbitrage models of pricing options and

endogenizing their supply and demand. The key departure lies in recognizing that the

principal writers of index puts are market makers who face credit constraints, modeled here

as an exogenously imposed Value-at-Risk (VaR) constraint. In figure 4, we present the time

series of the liabilities-to-assets ratio of brokers-dealers. The L/A ratio sharply decreased

right before the 2008 financial crisis and sharply rose during the crisis.

[Figure 4 here]

After successfully addressing the skew response puzzle, we also show that our model im-

plications about the relationship between the net buy of puts and the disaster index, RN

variance, put price, IV skew, and the L/A ratio of broker-dealers are consistent with the

data.
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4 A Model of the Supply and Demand for Index Put

Options

We consider a one-period model. Agents trade at the beginning of the period and consume

at the end of the period. There are three traded assets: risk free bonds, the market index

(stock), and one-period puts of given moneyness. Bonds are elastically supplied. Each bond

pays one unit of the consumption good at the end of the period. The bond price is the

numeraire at the beginning of the period. Therefore, without loss of generality, the risk free

rate is zero.

Shares of stock are elastically supplied. A share of stock pays S units of the consumption

good at the end of the period. A disaster occurs with probability p, 0 < p < 1. In the

no-disaster state, S = eµ+σZ and in the disaster state, S = eµJ+σJZ , where Z ∼ N(0, 1) and

µ, µJ , σ, σJ are parameters. The stock price at the beginning of the period is exogenous

and equals one. We assume that the expected equity premium is positive, (1 − p)eµ+σZ +

peµJ+σJZ > 1.

The parameters p, µ, µJ , σ and σJ are specific to a given month. We allow the RN variance

and disaster index to differ across months. Therefore, different months are associated with

different parameter values. We make no assumptions about the time-series process of these

parameters but estimate the disaster index and RN variance from the cross-section of puts

prices each month.

The model-implied variance of log(S) on the real probability measure is

var {log(S)} = E
[
(1− p){p(µ− µJ) + σZ}2 + p{−p(µ− µJ) + σJZ}2

]
= (1− p)p(µ− µJ)2 + (1− p)σ2 + pσ2

J (6)
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Since the model-implied variance reduces to σ2, if we suppress disasters (p = 0), we define

the model-implied disaster index on the real probability measure as

[
(1− p)p(µ− µJ)2 + (1− p)σ2 + pσ2

J

]
− σ2

= (1− p)p(µ− µJ)2 + p(σ2
J − σ2) (7)

A put option has strike K and pays [K − S]+ units of the consumption good at the end of

the period. Puts are in zero net supply. The put price at the beginning of the period is P.

The put price must be lower than the strike price, P ≤ K; otherwise a bond that pays K

dominates the put.

There are two classes of price-taking agents, the “customer” and the “market maker”.

The customer has initial endowment W0. He buys α shares of stock and β puts, and invests

W0− α− βP units of the numeraire in bonds. He maximizes his expected quadratic utility:

max
α,β

E[U ] (8)

where

U ≡ W0 − α− βP + αS + β[K − S]+ − A

2

(
W0 − α− βP + αS + β[K − S]+

)2

and A is a preference parameter. We specify the utility as quadratic merely for compu-

tational convenience. The customer’s marginal utility is positive, provided W0 − α − βP +

αS + β[K − S]+ < A−1. In our calibration, we set W0 � A−1 and this guarantees that

the marginal utility is positive. The relative risk aversion coefficient is E[−(W0 − α− βP +

αS + β[K − S]+)U
′′
/U ′] ≈ −W0U

′′
/U ′. The objective function is concave in α and β. The

first-order conditions are affine functions of α and β and their optimal values are calculated
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in the appendix in closed form.

The market maker (MM) has zero endowment (without loss of generality), buys α̂, α̂ ≤ 0,

shares of stock and β̂ puts, and maximizes his expected payoff:

max
α̂,β̂

E
[
α̂(S − 1) + β̂

(
[K − S]+ − P

)]
(9)

subject to an exogenous VaR constraint

prob
{
α̂(S − 1) + β̂

(
[K − S]+ − P

)
< W ∗

}
≤ h (10)

In equilibrium, the market maker writes puts. The constraint α̂ ≤ 0 captures the institutional

role of a market maker that he may choose to hedge his position by selling stock short but

does not speculate by buying stock. We model the market maker as risk neutral merely

for convenience. What is important is that the market maker is less risk averse than the

customer. In practice, market makers may or may not hedge their short positions in puts

but this does not change the nature of our problem because the providers of the hedging

instruments to the market makers also face credit constraints.

The equilibrium put price is such that the put market clears, β + β̂ = 0. If the put price

is lower than the expected payoff of a put, P < E [[K − S]+], the MM does not write puts

and the supply of puts is zero. We calibrate the model in a way that the put price equals or

exceeds the expected payoff of a put, P ≥ E [[K − S]+]. This captures the situation where

the risk averse customer buys “overpriced” puts to hedge his investment in stock and the

risk neutral MM writes these puts to maximize profit.
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5 Resolution of the Skew Response Puzzle

We calibrate the model as follows. We set the length of the time period as one month.

We set the range of p as 0.04 - 0.16, corresponding to 0.48 - 1.92 expected disasters per

year. This range of p is in line with the estimates in Pan (2002), Eraker (2004), Eraker,

Johannes, and Polson (2006), and Lian (2014). We set the range of σ as 0.02 to 0.14,

which corresponds to the annual volatility ranging from 0.07 to 0.48. We set µ = 0.005,

corresponding to an annual equity premium with mean 6% in the no-disaster state; and µJ =

−0.04 and σJ = 0.80/
√

12, corresponding to annual volatility 80% of the equity premium in

the disaster state. For this range of parameters, the annual equity risk premium ranges from

2.86% to 17.04% and the annual volatility ranges from 7.38% to 45.01%, consistent with

the observed equity premium and volatility of the S&P 500 index. We set the customer’s

initial wealth at W0 = 500 and preference parameter at A = 0.001. The customer’s marginal

utility is positive since . The customers relative risk aversion coefficient is approximately

−W0U
′′
/U ′ = 500 × 0.001/(1 − 500 × 0.001) = 1, well within the range of the commonly

assumed level of risk aversion. Finally, we set the market makers initial wealth at zero, the

VaR threshold at W ∗ = −20, and the VaR probability at 1%. In the analysis of the impact

of W ∗ on the net buy, we allow to range from -80 to 0.

In figure 5 , we display the supply and demand curves for ATM and OTM puts for and

monthly disaster probability 0.05 or 0.10. As the put price increases, the customer demands

fewer puts and the market maker offers to write more puts although the supply is quite

inelastic. When the volatility is 0.04 and the probability of disaster is 0.05, the net buy of

ATM puts is 101.44 and the net buy of OTM puts is 309.71; and when the volatility is 0.04

and the probability of disaster is 0.10, the net buy of ATM puts is 74.36 and the net buy of

OTM puts is 144.37.
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[Figure 5 here]

We use a grid of parameter values p = 0.04, 0.045, ..., 0.16 and σ = 0.02, , 0.025, ..., 0.14.

For each parameter pair, we compute the cross-section of put prices with moneyness (K/S)

ranging from 0.8 to 1.15. From each cross-section of put prices, we compute the disaster

index, RN variance, and the IV skew. The RN variance has correlation .9998 with the

model-implied variance in equation (6); and the disaster index has correlation .8841 with the

model-implied disaster index in equation (7).

In figure 6 , we present the IV skew as a function of the disaster index and the RN variance.

In the first row, we fix as 0.04 or 0.08 and show that IV skew is increasing the disaster index.

In the second row, we fix as 0.06 or 0.10 and show the IV skew is decreasing in the RN

variance.

[Figure 6 here]

In Table 2, we report regressions of the observed IV skew on the observed disaster index

and RN variance. We compute the standard errors as in Newey and West (1987) with 15 lags

to correct for the autocorrelation of the IV skew. In univariate regressions, the coefficient of

the disaster index is positive and most significant during the crisis period. The coefficient of

the RN variance is insignificant over the full period and subperiods, except during the crisis

when it is positive and significant. We also report bi-variate regressions with both the RN

variance and disaster index as independent variables. For the whole period and subperiods,

the IV skew is increasing in the disaster index and RN variance but the coefficients are

statistically significant only in the whole period and after the crisis. Overall, the results are

ambiguous because of the high correlation between the disaster index and the RN variance.

[Table 2 here]
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As an alternative way to decompose the impact of the disaster index and RN variance on

the IV skew, we classify all the months over the time period January 1996 to December 2012

into ten bins with an equal number of months in each bin, based on increasing RN variance.

For each bin, we plot the IV skew as a function of disaster index. In the first row of figure 7,

we show these graphs for the second percentile of the RN variance (low volatility risk) and

the ninth percentile of the RN volatility (high volatility risk). Consistent with the model,

the IV skew is increasing in the disaster index.

Next, we classify all months over the time period January 1996-December 2012 into ten

bins with equal number of months in each bin, based on increasing disaster index. For each

bin, we plot the IV skew as a function of the RN variance. In the second row of figure 7,

we show these graphs for the second percentile of disaster index (low disaster risk) and the

ninth percentile of disaster index (high disaster risk). Consistent with the model, the IV

skew is decreasing in the RN variance.

[Figure 7 here]

5.1 The IV Skew and the Market Makers’ Constraint

The market makers’ VaR constraint plays a crucial role in explaining the skew response

puzzle. The constraint becomes more binding as the parameter W ∗ increases in equation

(10). In figure 8, we plot the model-implied IV skew as a function of W ∗, keeping constant all

other parameters. The IV skew is an increasing function of the market makers’ constraint.

This prediction is borne out in the data. In Table 3, we present quarterly regressions of

the 3-month average observed IV skew on the L/A ratio of broker-dealers with and without

controlling for the disaster index and RN variance. The regressions are quarterly because

the L/A ratio is available only at the quarterly frequency. We apply the Newey-West (1987)
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correction with 5 lags to account for autocorrelation. Consistent with the model prediction,

the coefficient of the L/A ratio is positive and statistically significant, irrespective of whether

we control or not for the disaster index and RN variance.

[Table 3 and Figure 8 here]

In the earlier Table 2, we regressed the IV skew on the monthly disaster index and RN

variance. We did not control for the L/A ratio because this ratio is available only at the

quarterly frequency. In Table 3, we present regressions of the 3-month average observed IV

skew on the 3-month average disaster index and RN variance with and without controlling for

the L/A ratio. The regression coefficients of the disaster index and RN variance are similar

irrespective of whether we control for the L/A ratio. We conclude that the regressions in

Table 2 are robust to controlling for the L/A ratio.

6 The Net Buy of Puts and Empirical Evidence

In this section, we present several testable implications of the model regarding the net buy

of puts. We find that the model implications regarding the relation between the net buy of

puts and the disaster index,RN variance, put price, and the IV skew are consistent with the

empirical evidence. In none of the regressions presented in this section do we use variance,

disaster risk, or index returns as control variables because the net buy of puts in our model

is endogenous with these variables so that these variables cannot serve as control variables.
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6.1 The Net Buy of Puts versus the Disaster Index and RN vari-

ance

We distinguish between a change in the net buy of OTM puts due to an increase in the

disaster index and a change due to an increase in the RN variance. First, we fix σ and vary

p. For each value of p, we generate the cross-section of OTM put prices and calculate the

disaster index. In the top row of figure 9 , we present the net buy of OTM puts as a function

of the disaster index. The net buy is decreasing in the disaster index. Second, we fix σ and

vary σ. For each value of σ, we generate the cross-section of OTM put prices and calculate

the RN variance. In the bottom row of figure 9 , we show that the net buy is decreasing

in the RN variance. Thus the model predicts that the net buy is decreasing in both the

disaster index and the RN variance. These results are consistent with our intuition. When

the disaster index and/or the RN variance increase, the customers like to buy more puts as

insurance but the market makers become more credit-constrained. That is, both the supply

and demand curves shift. The supply shift turns out to be the driving factor in the decrease

in the equilibrium net buy of puts.

[Figure 9 here]

Corresponding results for ATM puts are presented in figure 10. The model implies that the

net buy of ATM puts by customers is everywhere decreasing in the disaster index (top row

of figure 10)). The model also implies that the net buy of ATM puts is increasing in the

RN variance when the variance level is low and decreasing in the variance when the variance

level is high (bottom row of figure 10)).

[Figure 10 here]
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In figure 11, we present the time series of the net buy by customers, the RN variance, and

the disaster index. Through most of the period from January 1996 to December 2012, the

net buy of OTM puts is mostly positive, with a slight negative net buy when the RN variance

and disaster risk are relatively high, such as around 1999 (dot-com bubble) and after the

2008 financial crisis. The net buy of OTM puts began rising in 2004 as the RN variance and

disaster index began to fall, consistent with our model. In 2007 right before the financial

crisis, the net buy peaked. Since the financial crisis in 2008, the net buy of customers has

started to decrease while the RN variance and disaster index rose to unprecedented levels.

This indicates that the market markets have gradually decreased their supply though the

demand for OTM puts should be historically high. After the crisis, the net buy of OTM

puts decreases to be negative in some months along with the high RN variance and disaster

index. The net buy of ATM puts is mostly positive throughout this period. The time-series

pattern of ATM puts is similar as the pattern in the net buy of OTM puts. These patterns

are consistent with the basic premise of our model, that customers buy puts as insurance

while market makers write these puts.

[Figure 11 here]

In Table 4, we report regressions of the monthly net buy of OTM puts by customers versus

the disaster index and the RN variance over the period 1996:1-2012:12. Here and throughout

this section we compute the standard errors in all of the regressions as in Newey and West

(1987) with 15 lags to correct for the autocorrelation of the net buy. Consistent with the

model implications, in univariate regressions, the net buy is significantly decreasing in both

the disaster index and the RN variance in the full period and subperiods. We interpret the

bivariate regressions with caution because of the high correlation between the disaster index

and the RN variance. In Table 5, we report the corresponding regressions for ATM puts.

Again the results are consistent with the model implications. In univariate regressions, the
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net buy is significantly decreasing in both the disaster index and the RN variance in the full

period but the coefficients are insignificant in the subperiods.

[Tables 4 and 5 here]

6.2 The Net Buy of Puts versus the Price of Puts

The model implies that an increase in the put price positively shifts the supply and negatively

shifts the demand for both OTM and ATM puts. In figure 12 , we display the model-implied

net buy of OTM puts as a function of the put price, where the put price is stated in terms

of its Black-Scholes (B-S) implied volatility. We distinguish between an increase in the put

price due to an increase in the RN variance from an increase in the put price due to an

increase in the disaster index. Keeping the RN variance constant but varying the disaster

risk, the net buy of OTM puts is decreasing the price of OTM puts (top row of figure 12 )).

Keeping the disaster probability constant but varying the RN variance, the net buy of OTM

puts is decreasing in the price of OTM puts (bottom row of figure 12 ). Thus, our model

implies that the net buy of OTM puts is decreasing in the price of OTM puts. Consistent

with our model implications, the observed net buy of OTM puts is decreasing in the price

of OTM puts (figure 13 ) for the full period and all the sub-periods.

[Figures 12 and 13 here]

In figure 14 we display the model-implied net buy of ATM puts as a function of the put price,

expressed in terms of its B-S IV. Keeping the variance constant but varying the disaster risk,

the net buy of ATM puts is everywhere decreasing in the price of ATM puts (top row of

figure 14). Keeping the disaster risk constant but varying the variance, the net buy of ATM

puts is increasing in the price when the level of variance is low and decreasing in the price
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when the variance level is high (bottom row of figure 14). Thus, our model implies that

the net buy of ATM puts may be either increasing or decreasing in the price of ATM puts.

Our model implies that the decreasing pattern between the net buy and option prices is less

significant for ATM puts than for OTM puts. Consistent with our model implications, the

observed net buy of ATM puts is decreasing in the put price during the full sample period

(figure 15). For the sub-periods, the plots do not show a clear relationship between the net

buy and the price of ATM puts.

[Figures 14 and 15 here]

In the top panel of Table 6 , we report regressions of the net buy of OTM puts on the price

of OTM puts. For the full period and the sub-periods, the regressions consistently show a

significant negative relationship between the net buy and the price of OTM puts. In the

bottom panel of Table 6 , we report regressions of the net buy of ATM puts on the price

of ATM puts. For the full period and the sub-periods, the regressions consistently show a

significant negative relationship between the net buy and the price of ATM puts. These

regressions are consistent with the model implications.

[Table 6 here]

6.3 The Net Buy of Puts versus the IV Skew

Consistent with our model implications, the observed IV skew shows either negative or no

relation with the net buy of OTM and ATM puts. This contrasts with the implications of

the model in Gârleanu et al. (2009) which assumes exogenous demand shifts and no supply

shifts. Their Proposition 4 states that an exogenous positive shift in the demand for a certain

OTM put has a bigger pricing effect on the demand of deep OTM puts than on slightly OTM
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puts, that is, the IV skew unambiguously becomes steeper.

As the disaster risk increases, keeping the RN variance constant, the model predicts a

negative relationship between the net buy and the IV skew when the disaster index increases.

This is illustrated in the bottom row of figure 16 for OTM puts and the bottom row of figure

17 for ATM puts. This is consistent with our findings in the previous sections that the IV

skew increases and the net buy of OTM puts decreases with higher disaster risk when the

RN variance is fixed.

[Figures 16 and 17 here]

As the RN variance increases, keeping the disaster index constant, our model predicts a

positive relationship between the IV skew and the net buy of OTM puts when we increase the

RN variance. This is illustrated in the bottom row of figure 16. This is also consistent with

our previous findings. The IV skew becomes flatter and the net buy of OTM puts decreases

as we increase the RN variance and keep the disaster risk fixed. Therefore, whether the net

buy increases or decreases with the IV skew depends on whether the skew or the net buy

decreases faster with higher RN variance.

In contrast, the relation between the IV skew and the net buy of ATM options is more

complicated. In the top row of figure 17, our model predicts that the net buy is decreasing

in the IV skew when the IV skew is high and increasing in the IV skew when the IV skew

is low. As we showed earlier, keeping the disaster index constant, the model implies that

the net buy of ATM puts increases with the RN variance when the variance is relatively low

and decreases with the RN variance when the variance is relatively high. On the other hand,

the IV skew always decreases with the RN variance. Therefore, when the RN variance is

relatively low, our model implies that the IV skew level is high and the net buy is decreasing

in the IV skew. When the variance is relatively high, the IV skew level is low and meanwhile
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both the net buy and the skew are decreasing in the variance risk. The pattern of the net

buy versus the skew again depends on which of the two decreases faster in the RN variance.

Since the RN variance and the disaster index are highly correlated, our model is ambiguous

regarding the relationship between the IV skew and the net buy of both OTM and ATM

puts. These implications are consistent with the data. This is illustrated in the regressions in

Table 7 . The decreasing pattern between the skew and the net buy is most significant during

the crisis and for OTM puts. This is the period when the net buy of puts is primarily driven

by changes in the disaster probability rather than the RN variance. During the financial

crisis, the disaster risk is high and market makers face a tighter VaR constraint even if the

variance risk is the same as in other sub-periods. This leads to a steeper IV skew and lower

net buy of puts. Therefore, we observe a significant negative relationship between the IV

skew and the net buy of both OTM and ATM puts, though the pattern is more significant

for OTM puts because of higher demand for OTM puts as crash insurance.

[Table 7 here]

6.4 The Net Buy of Puts versus the Market Makers’ Constraint

In figure 18, we plot the net buy of puts as a function of W ∗, keeping constant all other

parameters. The net buy of puts is a decreasing function of the market makers’ constraint.

This prediction is borne out in the data. In Tables 8 and 9, we present quarterly regressions

of the 3-month average observed net buy of OTM and ATM puts on the L/A ratio of broker-

dealers with and without controlling for the disaster index, RN variance, prices of puts,,

and IV skew. The regressions are quarterly because the L/A ratio is available only at the

quarterly frequency.

[Figure 18 and Table 8 and 9 here]
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In the monthly regressions reported in the earlier Sections 6.1 to 6.3, we did not control

for the L/A ratio because this ratio is available only at the quarterly frequency. In Tables

8 and 9, we present regressions of the 3-month average observed net buy on the 3-month

average disaster index, RN variance, put price, and IV skew with and without controlling

for the L/A ratio. We apply the Newey-West (1987) correction with 5 lags to account for

autocorrelation. The regression coefficients of the disaster index, RN variance, prices of

puts, and IV skew are similar irrespective of whether we control for the L/A ratio or not.

We conclude that the regressions in Sections 6.1 to 6.3 are robust to controlling for the L/A

ratio.

The coefficient of the L/A ratio is significantly negative in the regressions of the net buy

of OTM puts. This is consistent with our model implication that the net buy of OTM puts

is decreasing as the VaR constraint becomes more severe. In the regressions of the net buy

of ATM puts, the coefficient of the L/A ratio is insignificant because the VaR constraint is

less sensitive to the short positions in ATM puts.

7 Concluding Remarks

We document the IV skew response puzzle: a general class of no-arbitrage models imply

that the IV skew is decreasing in the RN variance and disaster index, contrary to the em-

pirical evidence on one-month S&P 500 put options. We explain the puzzle by modeling the

endogenous supply and demand of index puts. The key lies in recognizing that the principal

suppliers of index puts are market makers who are subject to exogenous credit constraints.

The model captures the scenario where risk neutral market makers write “overpriced” puts

while the risk-averse public customers buy the index to maximize their utility and hedge

their exposure to downside risk by buying index puts. The model implies that the IV skew
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is increasing in the disaster index and decreasing in the RN variance. Since the RN variance

and disaster index are highly correlated, this leads to the observed non-decreasing IV skew

in the RN variance and disaster index. Furthermore, consistent with the empirical evidence,

the model implies that the IV skew increases as the VaR constraint becomes more binding.

The shift in the supply and demand for S&P 500 put options not only explains the IV

skew puzzle but also explains a novel set of observations about the net buy of puts. The

model and the data consistently imply that the net buy of puts is decreasing in the RN

variance, disaster index, put price, and severity of the VaR constraint.

The paper focuses on OTM put options that derive their value from the left-hand tail of

the index price distribution and give rise to a pronounced IV skew, unlike OTM call options

that derive their value from the right-hand tail of the distribution and give rise to either a

faint IV skew or a faint smirk. Constantinides, Czerwonko, Jackwerth, and Perrakis (2011)

and Constantinides, Jackwerth, and Perrakis (2009) showed that OTM European calls on

the S&P 500 index and OTM American calls on the S&P 500 index futures frequently imply

stochastic dominance violations: any risk averse investor who invests in a portfolio of the

index and the risk free asset increases his expected utility by writing OTM “overpriced”

calls. Therefore, even the risk-averse customers have an incentive to write OTM calls. Our

model does not capture the trading behavior of market makers and customers in OTM calls.

We leave it as a project for future research to develop a model that captures the trading

behavior of market makers and customers in OTM calls.
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Appendix: The Customer’s Problem

For a given put price P , we numerically calculate the customer’s optimal decisions (α, β)

and the MM’s optimal decisions (α̂, β̂). Finally, we numerically search for the put price that

satisfies the market clearing condition β + β̂ = 0.

Before we compute the expectation in the customer’s objective function, we compute the

following:

E[eµ+σZ) = eµ+σ
2/2 = E1(µ, σ)

E[
(
eµ+σZ

)2
) = e2µ+2σ2

= E2(µ, σ)

E
[[
K − eµ+σZ

]+]
=

∫ +∞

−∞
(K − eτ )+f(τ)dτ = K

∫ log(K)

−∞
f(τ)dτ −

∫ log(K)

−∞
eτf(τ)d]τ

= KΦ(
log(K)− µ

σ
)− eµ+σ2/2Φ

(
log(K)− µ− σ2

σ

)
= F1(µ, σ;K)

E[((K − eµ+σZ)+)2] =

∫ +∞

−∞
((K − eτ )+)2f(τ)dτ =

∫ log(K)

−∞
(K2 − 2Keτ + e2τ )f(τ)dτ

= K2

∫ log(K)

−∞
f(τ)dτ − 2K

∫ log(K)

−∞
eτf(τ)dτ +

∫ K

−∞
e2τf(τ)dτ

= K2Φ(
log(K)− µ

σ
)− 2Keµ+σ

2/2Φ

(
log(K)− µ− σ2

σ

)
+e2µ+2σ2

Φ

(
log(K)− µ− 2σ2

y

)
= F2(µ, σ;K)

E[eµ+σZ(K − eµ+σZ)+] =

∫ +∞

−∞
eτ (K − eτ )+f(τ)dτ = K

∫ log(K)

−∞
eτf(τ)dτ −

∫ log(K)

−∞
e2τf(τ)dτ

= Keµ+σ
2/2Φ

(
log(K)− µ− σ2

σ

)
− e2µ+2σ2

Φ

(
log(K)− µ− 2σ2

y

)
= F3(µ, σ;K)

where f(·) is the density function and Φ(·) is the CDF of the standard normal distribution.
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We write the objective function of the customer as

max
α,β



α(1− p)(1− AW0)[E1(µ, σ)− 1] + β(1− p)(1− AW0)[F1(µ, σ;K)− P ]

−α2A
2
(1− p)[E2(µ, σ)− 2E1(µ, σ) + 1] + αβA(1− p)[F1(µ, σ;K)

−F3(µ, σ;K) + PE1(µ, σ)− P ]− β2A
2
(1− p)[F2(µ, σ;K)

−2PF1(µ, σ;K) + P 2] + αp(1− AW0)[E1(µJ , σJ)− 1]

+βp(1− AW0)[F1(µJ , σJ ;K)− P ]

−α2A
2
p[E2(µJ , σJ)− 2E1(µJ , σJ) + 1] + αβAp[F1(µJ , σJ ;K)

−F3(µJ , σJ ;K) + PE1(µJ , σJ)− P ]− β2Ap
2

[F2(µJ , σJ ;K)

−2PF1(µJ , σJ ;K) + P 2]



The first-order conditions are:

(1− p)(1− AW0)[E1(µ, σ)− 1]− αA(1− p)[E2(µ, σ)− 2E1(µ, σ) + 1]

+βA(1− p)[F1(µ, σ;K)− F3(µ, σ;K) + PE1(µ, σ)− P ]

+p(1− AW0)[E1(µJ , σJ)− 1]− αAp[E2(µJ , σJ)− 2E1(µJ , σJ) + 1]

+βAp[F1(µJ , σJ ;K)− F3(µJ , σJ ;K) + PE1(µJ , σJ)− P ]

= 0

(1− p)(1− AW0)[F1(µ, σ;K)− P ] + αA(1− p)[F1(µ, σ;K)− F3(µ, σ;K)

+PE1(µ, σ)− P ]− βA(1− p)[F2(µ, σ;K)− 2PF1(µ, σ;K) + P 2]

+p(1− AW0)[F1(µJ , σJ ;K)− P ] + αAp[F1(µJ , σJ ;K)− F3(µJ , σJ ;K)

+PE1(µJ , σJ)− P ]− βAp[F2(µJ , σJ ;K)− 2PF1(µJ , σJ ;K) + P 2]

= 0
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with solution  α

β

 =

 a11 a12

a21 a22


−1 c1

c2


where,

a11 = A(1− p)[E2(µ, σ)− 2E1(µ, σ) + 1] + Ap[E2(µJ , σJ)− 2E1(µJ , σJ) + 1]

a12 = A(1− p)[−F1(µ, σ;K) + F3(µ, σ;K)− PE1(µ, σ) + P ] + Ap[−F1(µJ , σJ ;K)

+F3(µJ , σJ ;K)− PE1(µJ , σJ) + P ]

a21 = A(1− p)[−F1(µ, σ;K) + F3(µ, σ;K)− PE1(µ, σ) + P ] + Ap[−F1(µJ , σJ ;K)

+F3(µJ , σJ ;K)− PE1(µJ , σJ) + P ]

a22 = −A(1− p)[F2(µ, σ;K)− 2PF1(µ, σ;K) + P 2]− Ap[F2(µJ , σJ ;K)

−2PF1(µJ , σJ ;K) + P 2]

c1 = (1− p)(1− AW0)[E1(µ, σ)− 1] + p(1− AW0)[E1(µJ , σJ)− 1]

c2 = (1− p)(1− AW0)[F1(µ, σ;K)− P ] + p(1− AW0)[F1(µJ , σJ ;K)− P ]
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Table 1: Summary Statistics

The table reports summary statistics of the de-trended net buy of OTM and ATM puts, the IV skew, the
IV of OTM and ATM puts, all at the monthly frequency; and the L/A ratio at the quarterly frequency. The
data covers the full period, 01/1996-12/2012. The variables are defined in Section 2. The OTM puts are
S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days. The ATM puts are S&P 500 puts with
moneyness 0.97 - 1.03 and maturity 15 - 60 days.

mean median std.dev. quantile (5) quantile (95) AC (1)
net buy (OTM) 0.0191 0.0157 0.0366 -0.0396 0.0841 0.3233
net buy (atm) 0.0434 0.0359 0.0427 -0.0120 0.1257 0.3454
IV Skew 0.1200 0.1203 0.0219 0.0874 0.1537 0.7689
B-S Imv. (OTM) 0.3118 0.2995 0.0757 0.2219 0.4556 0.844
B-S Imv. (ATM) 0.1918 0.1816 0.0738 0.1014 0.3208 0.8647
L/A ratio 1.0382 1.0263 0.0463 0.9776 1.1194 0.9843
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Table 2: The Observed IV Skew versus the Observed Disaster Index and RN Variance

The table reports regressions of the IV skew on the disaster index and RN variance for the full sample period,
before the crisis, during the crisis, and after the crisis. The variables are defined in Section 2. The OTM
puts are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days. The ATM puts are S&P 500
puts with moneyness 0.97 - 1.03 and maturity 15 - 60 days.

Full Period Before Crisis
Disaster 1.152 11.40∗∗ 3.603∗ 10.24
Index (0.967) (3.668) (1.556) (5.294)

RN 0.0104 -0.706∗∗ 0.0707 -0.493
Variance (0.0386) (0.227) (0.136) (0.276)

constant 0.118∗∗∗ 0.120∗∗∗ 0.134∗∗∗ 0.110∗∗∗ 0.112∗∗∗ 0.122∗∗∗

(0.00458) (0.00515) (0.00725) (0.00440) (0.00727) (0.00699)
N 204 204 204 143 143 143
adj. R2 0.022 -0.004 0.224 0.096 0.003 0.212

During Crisis After Crisis
Disaster 1.103∗∗∗ 1.675 1.029 25.21∗∗∗

Index (0.227) (1.196) (0.906) (1.543)
[1em] RN 0.0757∗∗∗ -0.0407 -0.0262 -1.680∗∗∗

Variance (0.0160) (0.0892) (0.0420) (0.0882)

constant 0.0988∗∗∗ 0.0962∗∗∗ 0.100∗∗∗ 0.140∗∗∗ 0.144∗∗∗ 0.169∗∗∗

(0.00467) (0.00515) (0.00783) (0.00283) (0.00234) (0.00194)
N 19 19 19 204 204 204
adj. R2 0.281 0.265 0.238 0.022 -0.004 0.224

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: The Observed IV Skew versus the Liability/Asset Ratio, RN Variance and Disaster
Index

The table reports quarterly regressions of the net buy of OTM puts on the disaster index and RN variance
for the full sample period, 01/1996-12/2012. The variables are defined in Section 2. The OTM puts are S&P
500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days.

IV Skew (Full Period)
L/A 1.191∗ 1.211∗ 1.256∗ 1.038∗∗

(0.533) (0.546) (0.522) (0.364)

RN 0.00485 0.0204 -1.041∗∗∗ -1.090∗∗∗

Variance (0.0383) (0.0393) (0.178) (0.210)

Disaster 1.095 1.301 17.21∗∗∗ 17.80∗∗∗

Index (1.147) (1.091) (3.180) (3.479)

constant -1.097∗ 0.120∗∗∗ -1.119∗ 0.118∗∗∗ -1.167∗ -0.922∗ 0.141∗∗∗

(0.544) (0.00549) (0.558) (0.00504) (0.533) (0.371) (0.00675)
N 68 68 68 68 68 68 68
adj. R2 0.081 -0.015 0.069 0.010 0.102 0.416 0.352

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: Observed Net Buy of OTM Puts versus the Disaster Index and the RN Variance

The table reports regressions of the net buy of OTM puts on the disaster index and RN variance for the full
sample period, before the crisis, during the crisis, and after the crisis. The variables are defined in Section
2. The OTM puts are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days.

Full Period Before Crisis
Disaster -3.436∗ 3.469∗ -6.997∗ 1.908
Index (1.422) (1.388) (3.205) (1.109)

RN -0.196∗∗∗ -0.315∗∗∗ -0.302∗∗∗ -0.345∗∗∗

Variance (0.0583) (0.0712) (0.0527) (0.0661)

constant 0.0261∗∗∗ 0.0608∗∗∗ 0.0792∗∗∗ 0.0350∗∗∗ 0.0851∗∗∗ 0.0907∗∗∗

(0.00581) (0.0130) (0.0140) (0.00819) (0.0112) (0.0125)
N 204 204 204 143 143 143
adj. R2 0.081 0.172 0.190 0.099 0.223 0.221

During Crisis After Crisis
Disaster -1.466∗∗∗ 1.226 -5.916∗∗∗ -2.283
Index (0.154) (1.063) (1.310) (2.380)

RN -0.0902∗∗∗ -0.156∗ -0.203∗∗∗ -0.130
Variance (0.00909) (0.0639) (0.0449) (0.0915)

constant 0.0202∗∗∗ 0.0406∗∗∗ 0.0545∗∗ 0.0150∗∗∗ 0.0453∗∗∗ 0.0348∗

(0.00292) (0.00416) (0.0144) (0.00273) (0.00863) (0.0140)
N 19 19 19 42 42 42
adj. R2 0.120 0.160 0.117 0.160 0.166 0.147

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

40



Table 5: Observed Net Buy of ATM Puts versus the Disaster Index and the RN Variance

The table reports regressions of the net buy of ATM puts on the disaster index and RN variance for the full
sample period, before the crisis, during the crisis, and after the crisis. The variables are defined in Section
2. The ATM puts are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days.

Full Period Before Crisis
Disaster -2.724∗ -3.677 -1.425 -5.553
Index (1.119) (2.493) (4.421) (4.364)

RN -0.0830 0.0435 0.0368 0.160
Variance (0.0623) (0.113) (0.113) (0.128)

constant 0.0494∗∗∗ 0.0616∗∗∗ 0.0420∗ 0.0536∗∗∗ 0.0443 0.0278
(0.00569) (0.0136) (0.0186) (0.00831) (0.0225) (0.0222)

N 204 204 204 143 143 143
adj. R2 0.034 0.018 0.030 -0.004 -0.005 0.008

During Crisis After Crisis
Disaster -1.086∗∗∗ 1.927∗ -0.296 13.39∗∗

Index (0.180) (0.761) (1.097) (4.528)

RN -0.0713∗∗∗ -0.174∗∗ -0.0629 -0.490∗

Variance (0.0111) (0.0488) (0.0605) (0.186)

constant 0.0155∗∗∗ 0.0321∗∗∗ 0.0538∗∗∗ 0.0341∗∗∗ 0.0468∗∗∗ 0.108∗∗∗

(0.00240) (0.00443) (0.0116) (0.00406) (0.0112) (0.0295)
N 19 19 19 42 42 42
adj. R2 0.059 0.105 0.079 -0.025 -0.006 0.076

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6: Observed Net Buy of OTM and ATM Puts versus the Put Price in IV Units

The table reports regressions of the net buy of OTM and ATM puts for the full period and sub-periods on
the disaster index and RN variance. Full sample period: 01/1996-12/2012; before crisis: 01/1996-11/2007;
during crisis: 12/2007-06/2009; after crisis: 07/2009-12/2012. The variables are defined in Section 2. The
OTM puts are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days. The ATM puts are
S&P 500 puts with moneyness 0.97 - 1.03 and maturity 15 - 60 days.

Net Buys of OTM Puts
Full Period Before Crisis During Crisis After Crisis

B-S IV (OTM) -0.211∗∗∗ -0.296∗∗∗ -0.0927∗∗∗ -0.233∗∗∗

(0.0604) (0.0611) (0.00954) (0.0526)

constant 0.0848∗∗∗ 0.112∗∗∗ 0.0492∗∗∗ 0.0786∗∗∗

(0.0193) (0.0195) (0.00505) (0.0163)
N 204 143 19 42
adj. R2 0.186 0.203 0.165 0.181

Net Buys of ATM Puts
Full Period Before Crisis During Crisis After Crisis

B-S IV (ATM) -0.0893∗ 0.0406 -0.0791∗ -0.0721
(0.0360) (0.0667) (0.0369) (0.0930)

constant 0.0610∗∗∗ 0.0444∗∗∗ 0.0329∗∗ 0.0469∗

(0.00754) (0.0120) (0.0106) (0.0182)
N 204 143 19 42
adj. R2 0.018 -0.005 0.113 -0.004

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7: Observed Net Buy of OTM and ATM Puts versus the IV Skew

The table reports regressions of the net buy of OTM and ATM puts for the full period and sub-periods on
the IV skew. Full sample period: 01/1996-12/2012; before crisis: 01/1996-11/2007; during crisis: 12/2007-
06/2009; after crisis: 07/2009-12/2012. The variables are defined in Section 2. The OTM puts are S&P
500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days. The ATM puts are S&P 500 puts with
moneyness 0.97 - 1.03 and maturity 15 - 60 days.

OTM Puts
Full Period Before Crisis During Crisis After Crisis

IV Skew -0.233 -0.0148 -0.623∗ -0.234∗

(0.139) (0.238) (0.223) (0.112)

constant 0.0470∗∗ 0.0269 0.0768∗∗ 0.0354∗

(0.0160) (0.0250) (0.0240) (0.0174)
N 204 143 19 42
adj. R2 0.014 -0.007 0.063 -0.010

ATM Puts
Full Period Before Crisis During Crisis After Crisis

IV Skew -0.101 -0.103 -0.0246 0.235
(0.199) (0.257) (0.209) (0.327)

constant 0.0560∗ 0.0635∗ 0.0113 -0.0000772
(0.0254) (0.0279) (0.0233) (0.0476)

N 204 143 19 42
adj. R2 -0.002 -0.005 -0.059 -0.010

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

43



T
ab

le
8:

N
et

B
u
y

of
O

T
M

P
u
ts

ve
rs

u
s

th
e

L
ia

b
il
it

y
/A

ss
et

R
at

io
an

d
C

on
tr

ol
s

T
h

e
ta

b
le

re
p

or
ts

q
u

ar
te

rl
y

re
gr

es
si

on
s

of
th

e
n

et
b

u
y

o
f

O
T

M
p

u
ts

o
n

th
e

L
/
A

ra
ti

o
,

d
is

a
st

er
in

d
ex

,
R

N
va

ri
a
n

ce
,

p
ri

ce
o
f

O
T

M
p

u
ts

,
a
n
d
IV

sk
ew

fo
r

th
e

fu
ll

sa
m

p
le

p
er

io
d

,
01

/1
99

6-
12

/2
0
1
2
.

T
h

e
va

ri
a
b

le
s

a
re

d
efi

n
ed

in
S

ec
ti

o
n

2
.

T
h

e
O

T
M

p
u

ts
a
re

S
&

P
5
0
0

p
u

ts
w

it
h

m
o
n

ey
n

es
s

0
.8

0
-

0.
90

an
d

m
at

u
ri

ty
15

-
60

d
ay

s.

N
et

B
u

y
(O

T
M

)
F

u
ll

P
er

io
d

L
/A

-1
.5

12
∗

-1
.7

93
∗∗

∗
-1

.7
1
5
∗∗

-1
.8

5
7∗

∗∗
-1

.5
7
8∗

∗∗
-1

.3
3
9
∗

R
at

io
(0

.5
75

)
(0

.4
7
7
)

(0
.5

0
0
)

(0
.4

4
4
)

(0
.3

4
9
)

(0
.6

4
2
)

R
N

-0
.2

64
∗

-0
.2

8
7∗

-0
.5

9
0

-0
.6

7
9∗

V
ar

ia
n

ce
(0

.1
25

)
(0

.1
23

)
(0

.3
7
1
)

(0
.3

0
7
)

D
is

as
te

r
-3

.7
3
6∗

-4
.0

1
7
∗

5
.3

1
1

6
.3

5
7

In
d

ex
(1

.7
7
4
)

(1
.7

4
7
)

(5
.6

5
3
)

(4
.8

3
1
)

B
-S

IV
-0

.2
1
4∗

∗
-0

.2
1
7∗

∗

(O
T

M
)

(0
.0

5
5
6
)

(0
.0

4
9
1
)

IV
-0

.2
5
2

-0
.1

4
6

S
ke

w
(0

.0
7
1
2
)

(0
.0

6
5
1
)

co
n

st
an

t
1.

56
5∗

∗
0.

03
28

∗∗
∗

1.
86

7
∗∗

∗
0
.0

2
6
7∗

∗∗
1
.7

8
0∗

∗∗
0
.0

3
9
1∗

∗
1
.9

4
0
∗∗

∗
0
.0

8
5
9
∗∗

∗
1
.7

0
0
∗∗

∗
0
.0

4
9
3∗

1
.4

0
5∗

(0
.5

89
)

(0
.0

08
30

)
(0

.4
9
2
)

(0
.0

0
6
2
8
)

(0
.5

1
3
)

(0
.0

1
2
1
)

(0
.4

5
6
)

(0
.0

2
2
7
)

(0
.3

6
7
)

(0
.0

1
9
1
)

(0
.6

4
9
)

N
68

68
68

6
8

6
8

6
8

6
8

6
8

6
8

6
8

6
8

ad
j.

R
2

0.
07

0
0.

18
3

0.
29

1
0
.1

4
5

0
.2

4
2

0
.1

8
9

0
.3

0
7

0
.3

1
5

0
.3

9
9

0
.0

2
0

0
.0

6
7

S
ta

n
d

ar
d

er
ro

rs
in

p
ar

en
th

es
es

∗
p
<

0.
05

,
∗∗

p
<

0
.0

1,
∗∗

∗
p
<

0.
00

1

44



T
ab

le
9:

N
et

B
u
y

of
A

T
M

P
u
ts

ve
rs

u
s

L
ia

b
il
it

y
/A

ss
et

R
at

io
an

d
C

on
tr

ol
s

T
h

e
ta

b
le

re
p

or
ts

q
u

ar
te

rl
y

re
gr

es
si

on
s

of
th

e
n

et
b

u
y

o
f

A
T

M
p

u
ts

o
n

th
e

L
/
A

ra
ti

o
,

d
is

a
st

er
in

d
ex

,
R
N

va
ri

a
n

ce
,

p
ri

ce
o
f

A
T

M
p

u
ts

,
a
n

d
IV

sk
ew

fo
r

th
e

fu
ll

sa
m

p
le

p
er

io
d

,
01

/1
99

6-
12

/2
0
1
2
.

T
h

e
va

ri
a
b

le
s

a
re

d
efi

n
ed

in
S

ec
ti

o
n

2
.

T
h

e
O

T
M

p
u

ts
a
re

S
&

P
5
0
0

p
u

ts
w

it
h

m
o
n

ey
n

es
s

0
.8

0
-

0.
90

an
d

m
at

u
ri

ty
15

-
60

d
ay

s.

N
et

B
u

y
(A

T
M

)
F

u
ll

P
er

io
d

L
/A

0.
69

6
0.

5
1
5

0
.5

5
4

0
.5

1
7

0
.5

4
4

0
.8

1
6

R
at

io
(1

.0
13

)
(0

.9
9
8
)

(0
.9

8
3
)

(1
.0

1
8
)

(0
.9

4
8
)

(1
.0

6
9
)

R
N

-0
.1

91
∗∗

-0
.1

8
4
∗

-0
.1

9
9

-0
.1

7
4

V
ar

ia
n

ce
(0

.0
70

8)
(0

.0
7
2
6
)

(0
.4

0
3
)

(0
.4

1
7
)

D
is

as
te

r
-2

.9
1
8
∗∗

-2
.8

2
7∗

0
.1

2
8

-0
.1

6
3

In
d

ex
(1

.0
6
7
)

(1
.0

8
8
)

(6
.2

8
8
)

(6
.4

9
6
)

B
-S

IV
-0

.1
0
6

-0
.1

0
2

(A
T

M
)

(0
.0

7
0
3
)

(0
.0

6
9
2
)

IV
-0

.0
3
5
9

-0
.1

0
1

S
ke

w
-0

.0
3
5
9

-0
.1

0
1

co
n

st
an

t
-0

.6
68

0.
05

38
∗∗

∗
-0

.4
7
4

0
.0

4
9
8
∗∗

∗
-0

.5
1
6

0
.0

5
4
0∗

∗∗
-0

.4
7
5

0
.0

6
4
3
∗∗

∗
-0

.4
9
2

0
.0

4
8
2

-0
.7

7
8

(1
.0

35
)

(0
.0

06
62

)
(1

.0
2
2
)

(0
.0

0
5
5
4
)

(1
.0

0
5
)

(0
.0

1
0
8
)

(1
.0

4
4
)

(0
.0

2
1
5
)

(0
.9

7
2
)

(0
.0

2
8
8
)

(1
.0

8
3
)

N
68

68
6
8

6
8

6
8

6
8

6
8

6
8

6
8

6
8

6
8

ad
j.

R
2

-0
.0

02
0.

05
9

0.
05

2
0
.0

5
5

0
.0

4
8

0
.0

4
5

0
.0

3
7

0
.0

4
2

0
.0

3
9

-0
.0

1
5

-0
.0

1
4

S
ta

n
d

ar
d

er
ro

rs
in

p
ar

en
th

es
es

∗
p
<

0.
05

,
∗∗

p
<

0
.0

1,
∗∗

∗
p
<

0.
00

1

45



Figure 1: The IV Skew versus the RN Variance and Disaster Index Implied by the Bates
(2006) No-Arbitrage Model
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Figure 2: Observed Disaster Index versus RN Variance
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Figure 3: Observed IV Skew versus the RN Variance and Disaster Index

●
●●● ●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

● ●
●

●

●

●●●

●
●●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●
●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●
●
●
●
●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

0.00 0.10 0.20 0.30

0.
06

0.
10

0.
14

Full Period

RN Variance

IV
 S

ke
w

●

●
●● ●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

● ●
●

●

●

●●●

●
●●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

0.02 0.06 0.10 0.14

0.
06

0.
10

0.
14

Before Crisis

RN Variance

IV
 S

ke
w

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.05 0.15 0.25 0.35

0.
09

0.
11

0.
13

During Crisis

RN Variance

IV
 S

ke
w

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

0.02 0.04 0.06 0.08 0.10 0.12

0.
11

0.
13

0.
15

0.
17

After Crisis

RN Variance

IV
 S

ke
w

●
●●● ●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

● ●
●

●

●

●●●

●
●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●
●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●
●
●
●
●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

0.000 0.010 0.020

0.
06

0.
10

0.
14

Full Period

Disaster Index

IV
 S

ke
w

●

●
●● ●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

● ●
●

●

●

●●●

●
●●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

0.000 0.002 0.004 0.006 0.008

0.
06

0.
10

0.
14

Before Crisis

Disaster Index

IV
 S

ke
w

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.000 0.005 0.010 0.015 0.020 0.025

0.
09

0.
11

0.
13

During Crisis

Disaster Index

IV
 S

ke
w

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

0.002 0.004 0.006 0.008

0.
11

0.
13

0.
15

0.
17

After Crisis

Disaster Index

IV
 S

ke
w

47



Figure 4: Time Series of the Liabilities-to-Assets Ratio of Broker-Dealers as a Measure of
Market Makers’ Financial Constraints
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Figure 5: Model-Implied Supply and Demand for Put Options
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Figure 6: Model-Implied IV Skew as a Function of the Disaster Index and RN Variance
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Figure 7: The Observed IV Skew versus the Observed Disaster Index and RN Variance
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Figure 8: Model Implied IV Skew vs. W ∗

σ = 0.04, p = 0.08 σ = 0.08, p = 0.10
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Figure 9: Model-Implied Net Buy of OTM Puts by Customers versus the Disaster Index and
RN Variance

σ = 0.04 σ = 0.08
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Figure 10: Model-Implied Net Buy of ATM Puts by Customers versus the Disaster Index
and RN Variance

σ = 0.04 σ = 0.08
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Figure 11: Time Series of the Observed Net Buy, RN Variance, and Disaster Index
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Figure 12: Model-Implied Net Buy versus the Price of OTM Puts in IV Units

p = 0.06 p = 0.10
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Figure 13: Observed Net Buy versus the Price of OTM Puts in IV Units
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Figure 14: Model-Implied Net Buy versus the Price of ATM Puts in IV Units
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Figure 15: Observed Net Buy versus the Price of ATM Puts in IV Units
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Figure 16: Model-Implied IV Skew versus the Net Buy of OTM Puts

σ = 0.04 σ = 0.08
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Figure 17: Model-Implied IV Skew versus the Net Buy of ATM Puts

σ = 0.04 σ = 0.08
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Figure 18: Model-Implied Net Buy versus W ∗

σ = 0.04, p = 0.06

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
20

0
60

0
10

00

W*

N
et

 B
uy

 (
O

T
M

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
10

0
20

0
30

0
40

0

W*

N
et

 B
uy

 (
AT

M
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
10

0
30

0
50

0

W*

N
et

 B
uy

 (
O

T
M

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
50

15
0

25
0

35
0

W*

N
et

 B
uy

 (
AT

M
)

σ = 0.08, p = 0.10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
20

0
60

0
10

00

W*

N
et

 B
uy

 (
O

T
M

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
10

0
20

0
30

0
40

0

W*
N

et
 B

uy
 (

AT
M

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
10

0
30

0
50

0

W*

N
et

 B
uy

 (
O

T
M

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−80 −60 −40 −20 0

0
50

15
0

25
0

35
0

W*

N
et

 B
uy

 (
AT

M
)

60


