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Abstract

Panic-based bank runs can happen when depositors make their withdrawal decisions si-

multaneously. By imposing a withdrawal limit, one can prevent depositors from rushing to

withdraw all their funds on one date. This partitions each individual’s decision, thereby induc-

ing a coordination game with dynamic payo↵ externalities. The information about whether the

bank has survived all withdrawals so far is revealed publicly. We show that if the withdrawal

limit is su�ciently small, depositors ignore their private information and coordinate on this

public news, once they reach the last node. We use a backward inductive argument to show

that depositors who anticipate that no one will withdraw their funds later do not withdraw

earlier either. Thus, any solvent bank can be made immune to self-fulfilling runs. By a similar

argument, su�ciently asynchronous debt structures could overcome rollover risk. We formalize

this policy in a dynamic global game of regime change and show that a su�ciently di↵used

policy unravels the coordination risk from the end.
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Introduction

Agents failing to coordinate on the right course of action will cause economic turmoil and recessions.

Pessimistic investors worrying about the non-participation of other potential investors may decide

to walk away from a profitable investment opportunity. Countries trying to attract investments or

financial institutions trying to convince their creditors to roll over their debt claims are often faced

with such challenges. Is there a way to persuade agents to coordinate on the right course of action?

Consider a demand-deposit contract, which is vulnerable to self-fulfilling bank runs.1 Depositors

will withdraw their funds early if they believe other depositors will do so. This paper proposes a

feasible way to make a bank immune to panic-based runs. Instead of allowing depositors to withdraw

any amounts of their funds on any date, the bank can restrict individual withdrawal at some interval

of time, e.g., depositors can withdraw at most 10% of their deposits every three days in a month.

Depositors cannot rush to withdraw all their funds on any date when such policy is in place. A

more (or less) di↵used policy would be setting a daily (or weekly) limit. After every three days

when depositors decide whether to withdraw 10% of their fund or not, they learn if the bank is still

viable. In this paper, we show that any solvent bank can avoid self-fulfilling runs if it can impose a

small enough limit. Similarly, making the debt structure su�ciently asynchronous could overcome

the rollover risk. We call such policy di↵using coordintation risk.

To appreciate the general appeal, we first consider a standard global game of regime change.2 We

formalize the policy of di↵using coordination risk in this general context. Then we apply this policy

to specific coordination games like bank runs and debt crises. There are two regimes. Although

agents prefer to attack the regime that will fail, the designer (such as a bank) wants agents to

coordinate on not attacking her preferred regime. Agents gather noisy private information about

the underlying fundamental strength of the designer’s preferred regime. If the aggregate attack

exceeds this fundamental strength, the preferred regime fails and vice versa. Following Morris and

Shin (2003), agents will not attack the preferred regime if and only if they get a su�ciently high

signal. Consequently, the preferred regime will materialize if and only if it is su�ciently strong. The

1 Diamond and Dybvig (1983) shows that a bank run happens because all depositors withdraw expecting others
to withdraw is an equilibrium. Goldstein and Pauzner (2005) has extended the bank run model of Diamond and
Dybvig (1983) to a global game setting and shows that a bank run happens only when the fundamental is su�ciently
weakly.

2For examples of a global game of regime change, see Morris and Shin (1998) and Angeletos et al. (2007) for the
currency crisis; Goldstein and Pauzner (2005) for self-fulfilling bank runs; Vives (2014) for financial fragility; and
Edmond (2013) for riots and political change.
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designer’s objective is to minimize the probability that agents will fail to coordinate on favoring the

preferred regime. We call this probability the coordination risk.3 So, how can the designer reduce

this coordination risk?

The designer can influence the game environment in many possible ways. We consider a specific

policy that the designer commits to - namely, “di↵using coordination risk” - for its practical appeal.

Instead of letting all agents make their decisions at the same time, the designer partitions the mass

of agents into finitely many groups and makes them move chronologically. The game proceeds to

a group moving later only when the preferred regime is still viable. With a mass of agents spread

uniformly over a time interval, an equivalent policy is to select certain dates to check whether

the preferred regime is still viable and to disclose this information publicly. If individual action

is divisible, the designer can also di↵use the coordination risk by setting a limit to individual

attack as in the bank run problem. Under di↵used coordination risk, if the preferred regime is

still viable, agents learn this information publicly before they take their action. We call this piece

of information the public information of survival. On the other hand, if the preferred regime has

failed, the game stops and the public survival news did not arise. The game reaches group t with

some residual fundamental strength. The public information of survival at time t says that the

residual fundamental at t is non-negative, which always helps to reduce coordination risk. Upon

receiving this information, all agents become more optimistic about the current fundamental and

this is publicly known. In a dynamic coordination game, group t agents are concerned about

whether the residual fundamental can withstand the attacks from agents moving at t and agents

moving afterwards. We call them intra-group coordination risk and inter-group coordination risk,

respectively.

The public information of survival breaks down the uniqueness result we get from the global

game. In particular, there can be an equilibrium where agents ignore their private information and

never attack the preferred regime. We refer to this as the first best. If the private information is suf-

ficiently noisy, we show that this is indeed the only strategy that survives the iterated elimination of

never best responses (Lemma 1). Di↵using coordination risk dilutes private information regarding

the e↵ective fundamental, or per capita residual fundamental. Suppose after 95% of agents have al-

3From the agent’s perspective, coordination risk arises from others attacking the regime that she favors. Thus,
there are two coordination risks from favoring either regime, which are complement to each other. The coordination
risk we defined refers to the one arising from favoring the designer’s preferred regime.
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ready made their decisions and the preferred regime is still viable and can sustain at most 4% attack

more. The last group consisting of 5% agents gather private information about the residual funda-

mental (4%). The payo↵ relevant information for them is whether the proportion of agents among

them attacking the preferred regime is lower than the e↵ective fundamental ( 4%5% = 80%). Thus,

the private information about the residual fundamental (4%), or the e↵ective private information,

will become very noisy about the e↵ective fundamental (80%). Therefore, when the last group is

su�ciently small, agents will ignore their private information and never attack the preferred regime.

Given the last group is su�ciently small, the same argument applies to the second-last group, who

face no inter-group coordination risk. Hence, if a designer can choose su�ciently fine partition, we

can construct an optimal policy backwards such that all the coordination risk unravels from the

end (Theorem 1).

If agents are gathering information right at the instance while making their decisions and such

information is su�cient to form their beliefs about the future play, then their decision at time t is

independent of how they get there. Consequently, the game can be solved backwards. However,

if they gather information when the game starts, group t agents will try to infer how the game

reaches time t. Hence, the game cannot be solved backwards. This complicates the role of di↵usion

considerably. Nonetheless, we show that the result is even stronger (Theorem 2).

In the information cascading models of Banerjee (1992) and Bikhchandani et al. (1992), we also

see agents ignore private information when they observe overwhelming evidence from past actions.

However, in our model, agents receive very limited information from past actions. They only observe

that the preferred regime has survived thus far. Agents are forward-looking because their payo↵

depends on the future actions of other agents. In fact, the payo↵ externality amplifies the positive

e↵ect of the public information of survival. Only if there are no future attacks and the private

information about the e↵ective fundamental is su�ciently noisy, will agents completely ignore their

private information and coordinate purely on the public survival news.

Committing to such a di↵used policy is feasible in practice. Hedge fund managers can lift

investor-level gates to limit investor’s redemption within a certain period. A common investor-level

gate limits redemptions to 25% of an investors money each quarter over four quarters.4 Choi et al.

(2014) also find that corporate bond issuers are adopting similar policies through the diversification

4See “Hedge funds try new way to avoid big redemptions, by Alistair Barr (June 10, 2010),
http://www.marketwatch.com/story/hedge-funds-try-new-way-to-avoid-big-redemptions-2010-06-10
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of debt rollovers across maturity dates. However, this type of policy is more commonly adopted when

banks or fund managers are facing liquidity shortages during times of crisis. For example, in the

recent financial crisis in Greece,5 the government imposed such withdrawal limits for households.

Regulators wanted to adopt partial suspension to prevent liquidity from drying up. The recent

Securities and Exchange Commission reform of money market funds in the U.S. provides fund

managers with the ability to set redemption gates within a certain period when a fund’s liquidity

position is not favorable.6 In our model, the designer makes commitment to a non-contingent

di↵used policy ex-ante, so that there is no signaling e↵ect of the policy.

Our main result shows that the first best outcome can be achieved uniquely through di↵using

coordination risk. What if achieving this requires the designer to infinitely di↵use the coordination

risk? Our main contribution is to show that this is not the case. There is a critical size for each

group such that no matter how small the fundamental strength is, if no group is larger than this

critical size, the preferred regime will succeed.

Related Literature

Our benchmark model, when all of the coordination risk is concentrated at a particular time,

follows Morris and Shin (1998, 2003, 2007) (henceforth, MS). This strand of literature is commonly

referred to as global games. Following the refinement idea of Carlsson and Van Damme (1993), the

assumption of the common knowledge of payo↵s is relaxed. Agents gather private information, and

we have a unique equilibrium that characterizes the coordination risk.

When the coordination risk is di↵used, a dynamic global game ensues. Chamley (1999) and

Angeletos et al. (2007) both considered a dynamic regime change problem in which agents get

repeated opportunities to make decisions. In their models, an agent’s payo↵ is realized period by

period, and there is no dynamic incentive to coordinate with future actions. In our model, di↵usion

forces agents to make their irreversible decision at a pre-specified time, and which regime will

materialize depends on the aggregate attack of all agents. Thus, agents have dynamic incentives to

coordinate with agents moving later.

Dasgupta (2007), Dasgupta et al. (2012), and Mathevet and Steiner (2013) developed a global

5See “Greek Banks Reopen Their Doors, but With Strict Limits Still in Place”, by Nektaria Stamouli (July 20,
2015), Wall Street Journal, http://www.wsj.com/articles/greek-banks-reopen-their-doors-1437376273.

6See http://www.sec.gov/rules/final/2014/33-9616.pdf.
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game with similar dynamic incentives. Chassang (2010) considered a dynamic global game problem

in which the fundamental varies over time. The underlying fundamental in our model is drawn only

at the beginning. The residual fundamental evolves endogenously depending on past actions. Apart

from receiving private information, agents learn publicly that the designer’s preferred regime is still

viable. Unlike Morris and Shin (2002) and Angeletos and Werning (2004), the public information in

our model is binary and truth-telling. We see similar public information in Angeletos et al. (2007).

When such public information is available, the precision of private information has quite a di↵erent

e↵ect in the equilibrium selection. We find that if the private information is su�ciently noisy, agents

will ignore their private information and coordinate purely on this positive public news. Di↵usion

is a way to make the private information about e↵ective fundamental noisier. Dasgupta (2007)

considers the case where agents have private noisy information about the past aggregate action. If

di↵usion induces repeated learning of the past actions, then more di↵usion will allow agents to learn

the fundemental more precisely. We have not considered such repeated learning from di↵usion in

this model. However, we show that our main result will hold true through as long as more di↵usion

could make e↵ective fundamental noiser.

Similar to Bergemann and Morris (2013), we consider a designer who wants to minimize the

risk that agents will fail to coordinate on favoring her preferred regime. But our designer may not

have full control over disclosing more information. She adpots a particular policy. If the preferred

regime survives the previous attacks, this policy reveals this information publicly. This manipulates

agents’ beliefs and thus their action. Unlike Angeletos et al. (2006), the designer commits to the

di↵used policy ex-ante, so there is no signaling e↵ect of the policy.

This paper is related also to herding literature (see Banerjee (1992) and Bikhchandani et al.

(1992)), emphasizing information externality. However, the reason why agents ignore their private

information is very di↵erent, as discussed before. Our mechanism works with a continuous state

and signal, while Smith and Sørensen (2000) showed that under continuous signal-setting, cascades

may not form. Avoiding self-fulfilling runs is an important application of our mechanism. We will

discuss how our work relates to this strand of literature in Section 3.
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Outline

This paper is organized as follows: In Section 1, we describe the regime change benchmark, where

all the risk of coordination is concentrated at one point in time. This section also shows how

public information of survival a↵ects the equilibrium selection. In Section 2, we introduce the

policy of di↵using coordination risk. We will characterize monotone equilibria recursively when this

type of policy is implemented. Our main result shows that when agents are gathering information

instantaneously and coordination risk is su�ciently di↵used, there is no attack against the preferred

regime (Theorem 1). Our main result is even stronger if agents are gathering information ex-ante

(Theorem 2). In Section 3, we extend this model to show how di↵using coordination risk can

avoid panic-based bank runs (Theorem 3) and self-fulfilling debt crises (Corollary 2). In Section 4

we explain how the inter-group and intra-group coordination risks interact and what the designer

should do if she has limited power of di↵usion (Theorem 4). In Section 5, we discuss the robustness

and extensions of our main results. Section 6 concludes. All the proofs appear in the Appendix.

1 Concentrated Coordination Risk

There are two regimes, indexed by R 2 {0, 1} and a continuum of agents, indexed by i 2 [0, 1].

Agents simultaneously decide whether to take an action in favor of regime 1 or regime 0. We will

refer to agent i’s action of favoring regime R as a
i

= R. Favoring a regime is equivalent attacking

the other one. Let ✓ be the fundamental strength of regime 1 and w =
´
i

(a
i

= 0)di =
´
i

(1� a
i

)di

be the aggregate attack against regime 1. Regime 1 successfully materializes if and only if its

fundamental strength ✓ is strong enough to withstand the aggregate attack against it, i.e., ✓ � w7.

Nature picks ✓ from the commonly known prior U [✓, ✓̄]. Agent i gets noisy private information

about ✓ denoted by s
i

= ✓ + �✏
i

, where the error ✏
i

s are conditionally independent8 and identically

distributed with zero mean. Let F denote the error distribution. We assume F is continuously

di↵erentiable and log-concave9. Let f be the density and supp(f) = [�0.5, 0.5]. � denotes the

standard deviation of the error and ⌧ = 1
�

2 is the precision. Assume that ✓  �� and ✓̄ � 1 + �.

7Equivalently, 1� ✓ is the fundamental strength of regime 0. Regime 0 materializes if and only if regime 1 failed,
i.e., 1� ✓ > 1� w.

8See Judd (1985) for the existence of continuum of independent random variables.
9Most of the distributions we use in practice satisfy logconcavity e.g. uniform, normal, exponential. The exceptions

are students t, lognormal distribution etc.

7



This assumption guarantees that the common prior is uninformative when agents have private

information. If s < ��

2 (or s > 1 + �

2 ), agents understand for sure that ✓ < 0 (or ✓ > 1), which

give us the dominance regions. Given s 2 [��

2 , 1 + �

2 ], ✓ is distributed according to 1 � F ( s�✓
�

).

Similarly, given ✓, the probability of receiving private signal s is distributed according to F ( s�✓
�

).

Agents are ex-ante identical and risk neutral. The payo↵ u(a
i

, w, ✓) is defined as follows.

u(1, w, ✓) =

8
><

>:

b1 if w  ✓

c0 if w > ✓

, u(0, w, ✓) =

8
><

>:

c1 if w  ✓

b0 if w > ✓

(1)

The payo↵ structure captures strategic complementarity. If regime R succeeds then agent i would

be better o↵ if he had not attacked it, i.e., bR > cR, R 2 {0, 1}.

There is a designer who prefers one regime over the other. We will follow the convention that

the regime 1 is the designer’s preferred regime and ✓ is the fundamental strength of the preferred

regime. The preferred regime may or may not be the default regime. From private information s
i

,

agents can learn the fundamental ✓, other agent’s belief about ✓, others’ beliefs about others’ beliefs

and so on. Agents receiving higher signals believe that - the preferred regime can withstand more

attacks. They also believe that - other players believe that - the preferred regime can withstand

more attacks and so on (higher order beliefs). Therefore, agents with higher signals are more likely

not to attack the preferred regime. We will look into the monotone equilibrium where agents do

not attack the preferred regime if and only if s
i

� s?. In equilibrium, the higher the fundamental

✓ is, the larger share of agents will receive signal above s?. Thus, there exists ✓? such that the

preferred regime materializes if and only if ✓ � ✓?. The monotone equilibrium can be summarized

by (✓?, s?). Following Morris and Shin (2003), we know this monotone equilibrium is indeed the

unique equilibrium.

Proposition 1 There is a unique equilibrium where an agent takes action favoring the preferred

regime if and only if she gets a signal s � s?. The preferred regime materializes i↵ ✓ � ✓?, where

✓? = p0 :=
1

1+
b1�c1
b0�c0

and s? = ✓? + 1p
⌧

F�1(✓?).

p0 2 (0, 1) is such that, if an agent believes that the preferred regime will succeed with prob-

ability at least p0, he will not attack the preferred regime. We will call probability P (✓ < ✓?)

the coordination risk. ✓? is a su�cient statistic for the coordination risk. The designer wants to

8



minimize ✓⇤. ✓⇤ = 0 is the first best outcome for the designer. Even if no one attacks, the preferred

regime cannot succeed when ✓ < 0.

For certain coordination game, agents may naturally have the public information ✓ � 0. The

public information ✓ � 0 tells that the preferred regime will materialize if there is no attack against

it. Such public information will play a crucial role in our analysis of di↵using coordination risk.

Public Information of Survival: ✓ � 0

When ✓ � 0 is publicly known, there is no lower dominance region. Agents understand that the

preferred regime will succeed if nobody attacks it. All agents ignoring their private information and

never attacking the preferred regime is always an equilibrium. Unlike standard global game, iterated

elimination of never best responses may not lead to unique rationalizable strategy. However, we

will show that given uninformative prior, if the private information is su�ciently noisy, then not

attacking the preferred regime irrespective of the private signal is the unique rationalizable strategy.

Lemma 1 Given uninformative prior and the log-concavity of F , when public information ✓ � 0

is available, there exists ⌧ ⇤ such that if ⌧  ⌧ ?, then the preferred regime succeeds whenever ✓ � 0.

Thus, when private information is su�ciently noisy, ✓? = 0 is the unique equilibrium threshold of

fundamental.10 As long as the realization of ✓ is non-negative, the preferred regime will materialize.

When ⌧ > ⌧ ?, we have multiple equilibria. The following Proposition is a static version of Angeletos

et al. (2007).

Proposition 2 With public information of survival, there are multiple equilibria. A monotone

equilibrium (✓?, s?) is such that either ✓? = 0, s? = � 1
2
p
⌧

or it satisfies the following conditions.

G(✓?,
p
⌧) :=

✓?

F (F�1(✓?) +
p
⌧✓?)

= p0. (2)

s?(✓?) = ✓? +
1p
⌧
F�1(✓?). (3)

10The above result will be exactly the same if we assume improper prior (uniform over the real line) and unbounded
support of noise. However, under this assumption, we will not be able to define the coordination risk properly. If we
consider the prior approaching the improper prior, we can say the designer will like to minimize ✓⇤. To avoid this
unnecessary complication, we assume a bounded prior and bounded support of noise.
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For any possible fundamental threshold ✓?, let s?(✓?) be such that if agents follow a threshold

strategy s?(✓?), then when ✓ � (<)✓?, the aggregate attack w  (>)✓?. G(.) captures the belief

of the corresponding threshold agent s?(✓?) that the preferred regime will succeed. The following

Figure 1 shows the threshold agent’s belief G(✓?,
p
⌧). Without the public information of survival,

for any possible ✓?, the threshold agent with private information s?(✓?) believes the probability

that preferred regime will succeed is P (✓ � ✓⇤|s?(✓?)) = ✓⇤. In equilibrium, the threshold agent

believes the preferred regime succeeds with probability p0. Hence, we have a unique equilibrium

✓⇤ = p0. When agents have the public survival news, the threshold agent’s belief is P (✓ � ✓⇤|✓ �

0, s⇤(✓?)) = G(✓?,
p
⌧), which is a non-monotonic function of ✓?. Multiple equilibria could arise but

the coordination risk will be lower no matter which equilibrium is selected since G(✓?,
p
⌧) � ✓?. As

can be seen in Figure 1, if ⌧ decreases, the G(✓?,
p
⌧) shifts upwards. When ⌧ is su�ciently small,

there is no positive ✓? satisfying Equation (2).
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Public info: θ ≥0 and σ=1
Public info: θ ≥0 and σ=5
Without Public information
Probability p0 making agents
indifferent between two actions

Figure 1: Threshold agent’s belief with public information ✓ � 0

Based on Lemma 1, if the designer can control the precision of private information ⌧ , the first

best can be implemented as the unique equilibrium outcome. However, she is not likely to have

such unlimited manipulation power. In the rest of the paper we assume ⌧ is fixed and agents have

uninformative prior. We will show in next section how di↵usion could make the e↵ective private

information noisy.
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2 Di↵using Coordination Risk

Section 1 characterizes the coordination risk when agents make their decisions simultaneously. In

this section, we will consider the model where the designer di↵uses coordination risk.

Di↵usion

The designer restricts aggregate attacks in any interval of time by spreading the timing of ac-

tion. This is done by dividing the agents into finitely many groups and let them make their

decisions chronologically. Di↵usion is a partition of agents, i.e., (T, (↵)), where T 2 N and

(↵) ⌘ (↵1,↵2, . . .↵T

) 2 �T�1.11 We refer (T, (↵)) as a policy or a mechanism. Agents are risk

neutral and ex-ante identical. They have been assigned to any group randomly. If an agent has

been assigned to group t, he will take action only once at time t and his action is irreversible.

The game proceeds further only when the preferred regime is still viable. The design commits

to the di↵used policy (T, (↵)) and it is publicly announced. The preferred is said to be still viable

if it materializes in absence of any further attack. If this is the case, agents learn this information

publicly. We call this public information of survival.

Residual strength

Suppose ↵
t

mass of agents are moving at time t and w
t

be the proportion of agents moving at t

who attack the preferred regime, i.e., w
t

= 1
↵

t

´
(1� a

it

)di, where a
it

is the action taking by agent i

in group t. Di↵usion restricts how much attack can happen within one period i.e., ↵
t

w
t

 ↵
t

, but

does not change the maximum possible aggregate attack, i.e.,
P

T

t=1 ↵t

= 1. The preferred regime

succeeds if and only if it withstands all attack against it. The payo↵ is exactly the same as in

Equation (1), where w :=
P

T

t=1 ↵t

w
t

.

Let ✓
t

be the residual fundamental strength at time t.

✓
t

:= ✓
t�1 � ↵

t�1wt�1 = ✓1 �
t�1X

u=1

↵
u

w
u

for t = 2, 3, ..., T and ✓1 = ✓ (4)

Public information of survival arises naturally when coordination is di↵used. The designer continues

the game to group t only if residual fundamental is non-negative, i.e., ✓
t

� 0. Agents at group t

11 �T�1 := {(↵1,↵2, . . . ,↵T

) 2 RT | ↵
t

� 0 8t = 1, 2 . . . T,
P

T

t=1 ↵t

= 1} is the T � 1 simplex.
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publicly learn ✓
t

� 0 before they make their decisions.

Definition 1 (Monotone Equilibrium) (✓?
t

, s?
t

)T
t=1 is said to be a monotone equilibrium if upon reach-

ing group t, for agent i of group t, a
it

= 1 if and only if the private information s
it

� s?
t

. If ✓
t

� ✓?
t

,

the preferred regime will withstand all attacks from t to T . The preferred regime materializes if and

only if ✓ � ✓?1.

2.1 Di↵using Coordination Risk with Instantaneous Information

Agents in group t 2 {1, 2, ..., T} enter the game right before they are about to make decisions. They

share prior ✓
t

⇠ U [✓, ✓̄] and they gather noisy private information regarding ✓
t

, s
it

= ✓
t

+�✏
it

, where

the distribution of ✏
it

is the same as in concentrated coordination case. Under this assumption,

prior is uninformative at any time. Thus we neglect the influence of updating prior from di↵usion.

We refer to this information structure as instantaneous information. The timing and information

structure of bifurcated di↵usion is summarized in figure 2.

0

Nature picks ✓

t1

Agent i 2 [0,↵1] moves

Aggregate attack ↵1w1

Prior: ✓1 ⇠ U [✓, ✓̄]
✓1 = ✓

Private info: s1i = ✓1 + �✏1i
Public info: ✓1 � 0

t2

Agent j 2 (↵1 = 1� ↵2, 1] moves

Aggregate attack ↵2w2

✓2 = ✓1 � ↵1w1

Prior: ✓2 ⇠ U [✓, ✓̄]
Agent j: s2j = ✓2 + �✏2j

Public info: ✓2 � 0

T

Payo↵ realized
based on ✓ and

w = ↵1w1 + ↵2w2

Figure 2: Timeline: Bifurcated Di↵usion

Monotone Equilibrium

Agents in group t have public information that ✓
t

� 0 in addition to their private information.

Given ✓?
t+1, for any possible threshold of residual fundamental ✓?

t

, let s?
t

(✓?
t

) be such that if group

t agents follow the threshold strategy s?
t

(✓?
t

, ✓?
t+1), then when ✓

t

� (<)✓?
t

, the residual fundamental

✓
t+1 � (<)✓?

t+1. Equivalently, if ✓t � (<)✓?
t

,

✓
t+1 = ✓

t

� ↵
t

w
t

= ✓
t

� P (s
t

< s?
t

|✓
t

) � (<)✓?
t+1, or P (s

t

< s?
t

|✓
t

) � (<)
✓
t

� ✓?
t+1

↵
t

.
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This gives us s?
t

(✓?
t

, ✓?
t+1) = ✓?

t

+ 1p
⌧

F�1(
✓

?

t

�✓?
t+1

↵

t

).We call
✓

t

�✓?
t+1

↵

t

the e↵ective fundamental strength at

time t. The threshold agent with private information s?
t

will believe the preferred regime materializes

with probability P (✓
t

� ✓?
t

|s?
t

, ✓
t

� 0). In equilibrium, the threshold agent will be indi↵erent between

attacking either regime.

P (✓
t

� ✓?
t

|s?
t

(✓?
t

, ✓?
t+1), ✓t � 0) =

✓

?

t

�✓?
t+1

↵

t

F (
p
⌧✓?

t

+ F�1(
✓

?

t

�✓?
t+1

↵

t

))
= p0

This solves for ✓?
T

(since ✓?
T+1 = 0) and going backwards we can solve for the sequence of {✓?

t

}T�1
t=1 .

Let us define (abusing notation) G : [0, 1]⇥ R⇥ [0, 1] ! [0, 1] as follows

G(x,m, y) :=
x

F (F�1(x) +mx+my)
(5)

Lemma 2 G(x,m, y) has the following properties:

1. G(x,m, y) is continuously di↵erentiable with respect to x;

2. x  G(x,m, y)  1, G(x,m, y) is decreasing in y and lim
x!1 G(x,m, y) = 1 ;

3. Givenm > 0 and y 2 (0, 1), for some p0 2 (0, 1), define x? := max
x

{x 2 [0, 1]|G(x,m, y)  p0},

we have the following properties:

(a) x? < 1, and if x? > 0, G(x?,↵) = p0;

(b) For alll x satisfying G(x,↵) < p0, x < x?;

(c) For all x satisfying G(x,↵) > p0, x > x? and dG

dx

|
x=x

? > 0.

Notice that when y = 0, we write G(x,m, y = 0) = G(x,m) (as defined in Equation (2)). Given

the inter-group coordination risk ✓?
t+1, for any possible ✓?

t

, G(
✓

?

t

�✓?
t+1

↵

t

,↵
t

p
⌧ ,

✓

?

t+1

↵

t

) captures the belief

of the corresponding threshold agent s?
t

(✓?
t

, ✓?
t+1) that the preferred regime will succeed.

Proposition 3 When coordination risk is di↵used, there are multiple equilibria. A monotone equi-

librium (✓?
t

, s?
t

)T
t=1 is such that for some t0 2 {1, 2, . . . T + 1}, ✓?

t

0 = ✓⇤
t

0+1 = . . . ✓⇤
T+1 = 0, and when

t0 > 1, for all t = 1, 2, . . . t0 � 1, ✓?
t

satisfies the following recursive relation:

G(
✓?
t

� ✓?
t+1

↵
t

,↵
t

p
⌧ ,
✓?
t+1

↵
t

) = p0 (6)
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and s?
t

= ✓?
t

+ 1p
⌧

F�1(
✓

?

t

�✓?
t+1

↵

t

).

The above recursive relation may not have unique solution because of the public survival news.

The first best, i.e., ✓?
t

= 0 for all t = 1, 2, . . . , T is always a solution. The public survival news always

helps to reduce the strategic uncertainties among agents irrespective of whether the coordination

risk is di↵used or not. On the other hand, di↵usion devoid of public survival news has no influence

on coordination risk.

Corollary 1 If there is public survival information, ✓⇤1  p0; if not, ✓
⇤
1 = p0.

An Optimal Policy

The following Theorem represents the main result of this paper. The validity of this Theorem is

not limited to the specific assumption regarding the designer’s preference.

Theorem 1 Suppose agents have uninformative prior and they gather noisy private information

instantaneously. Given (p0, ⌧), there exists ↵⇤ > 0, such that if the designer su�ciently di↵uses the

coordination risk, i.e., takes a policy (T, (↵)) such that ↵
t

 ↵⇤ for all t = 1, 2 . . . T , then the unique

equilibrium is ✓?1(T, (↵)) = 0.

This implies, for any non-negative realization of ✓(however small), there is a uniform bound on

how much the designer needs to di↵use the coordination risk to make sure the preferred regime will

succeed.12 The proof is constructive. The e↵ective fundamental for agents moving at time T is

✓

T

↵

T

. The preferred regime fails only if the share of agents who attack the preferred regime, or w
T

,

exceeds the e↵ective fundamental. Agents have the public information that ✓

T

↵

T

� 0 and the private

information regarding the e↵ective fundamental.

s
T

↵
T

=
✓
T

↵
T

+
1

↵
T

p
⌧
✏
T

. (7)

The precision of private information regarding the e↵ective fundamental is ↵
T

p
⌧ . Thus, by adopting

a di↵used policy, the designer is able to make the private information noisier (regarding the e↵ective

fundamental). From Lemma 1 it follows that if the designer can make ↵
T

su�ciently small, the

12If the information ✓ � 0 is not publicly known for the first group of players, the designer has to set ↵1 arbitrarily
small to achieve ✓⇤h1 = 0
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private information will be su�ciently noisy so that no rational agents will attack the preferred

regime. Applying this argument backwards, the coordination risk unravels from the end.

2.2 Di↵using Coordination Risk with Ex-ante Information

As in the concentrated coordination risk, all agents are gathering private information only at the

beginning and di↵usion reveals the survival news publicly. Agents receive no additional information

about ✓
t

expect the public survival news ✓
t

� 0. The detailed information structure of a simple

bifurcated di↵usion is illustrated in the following figure.

0

Nature picks ✓
Prior: ✓ ⇠ U [✓, ✓̄]

Private info: s
i

= ✓ + �✏
i

t1

Agent i 2 [0,↵1] moves

Aggregate attack:↵1w1

Public info: ✓1 � 0
✓1 = ✓

t2

Agent j 2 (↵1, 1] moves

Aggregate attack:↵2w2

✓2 = ✓1 � ↵1w1 = f1(✓1)
Public info: ✓2 = f1(✓1) � 0

T

Payo↵ realized
based on ✓ and

w = ↵1w1 + ↵2w2

Figure 3: Information structure and Timeline of gathering information at beginning

Let us define the residual fundamental strength at time t+ 1 as

✓
t+1 = f t(✓1) := f

t

� f
t�1 � . . . f1(✓1) (8)

in which f
t

(✓) := ✓ � ↵
t

P (s
t

< s?
t

|✓) is transformation function from ✓
t

to ✓
t+1. Define h

t

(x) :=

(f t�1)�1(x) as the fundamental strength that would have resulted in the fundamental strength x at

time t. These are increasing functions, which arise from the equilibrium specification. For agents

moving at time t, the public survival news is interpreted as ✓1 � h
t

(0). Agents update their belief

about ✓1 accordingly.

Monotone Equilibrium

Proposition 4 When coordination risk is di↵used, there are multiple equilibria. A monotone equi-

librium (✓?
t

, s?
t

)T
t=1 is such that for some t0 2 {1, 2, . . . T + 1}, ✓?

t

0 = ✓⇤
t

0+1 = . . . ✓⇤
T+1 = 0 and for

15



t = 1, 2 . . . t0 � 1, ✓?
t

satisfies the following recursive relation:

✓

⇤
t

�✓⇤
t+1

↵

t

F
⇣
F�1(

✓

⇤
t

�✓⇤
t+1

↵

t

) +
p
⌧(h

t

(✓⇤
t

)� h
t

(0))
⌘ = p0 (9)

and s?
t

= h
t

(✓?
t

) + 1p
⌧

F�1(
✓

?

t

�✓?
t+1

↵

t

).

The above recursive relation does not necessarily have a unique fixed point because of the public

survival news. ✓?
t

= 0 for all t = 1, 2, . . . , T is always an equilibrium. To solve for the sequence of

(✓⇤
t

) from the above recursive relation, we take a candidate solution ✓⇤1. If ✓⇤1 = 0, then ✓⇤
t

= 0 for

all t. Suppose ✓⇤1 > 0. Since h1(✓) = ✓, we can solve for ✓⇤2(✓
⇤
1) from Equation (9). This gives us

s⇤1(✓
⇤
1, ✓

⇤
2(✓

⇤
1)). Given s?1, we have f1(.|✓?1) and hence h2(.|✓?1). From the recursive relation 9 we can

then solve for ✓⇤3 and so on. Finally, if ✓⇤
t+1 = 0 for some t = 1, 2 . . . T , then it must be that

✓

⇤
t

(✓⇤1)
↵

t

F
⇣
F�1( ✓

⇤
t

(✓⇤1)
↵

t

) +
p
⌧(h

t

(✓⇤
t

(✓⇤1|✓⇤1))� h
t

(0|✓⇤1))
⌘ = p0.

Di↵erence between Two Information Structures

Suppose the designer change the policy such that (↵
t

, . . . ,↵
T

) remains the same, while (↵1, . . . ,↵t�1)

changes, then will the equilibrium behavior change upon reaching group t ? What agents care

about at time t is whether the residual strength ✓
t

can withstand the attack from the agents who

have not yet made their decisions. If agents are gathering private information instantaneously

about ✓
t

, then the game will be played exactly the same way as long as (↵
t

, . . . ,↵
T

) remains the

same. However, if agents have gathered their information only at the beginning, the change in

(↵1, . . . ,↵t�1) will change agent’s belief given the same signals. Thus upon reaching group t the

game will be played di↵erently. Thus, the equilibrium thresholds cannot be solved backwards when

agents gather information ex-ante.

However, the following Lemma shows that the public information of survival is more e↵ective

in reducing the coordination risk when agents gather private information ex-ante. Given ✓?
t+1, the

e↵ectiveness of public survival news can be measured by
p
⌧(✓?

t

�0) (or
p
⌧(h

t

(✓?
t

)�h
t

(0) for ex-ante

information).13 The larger the
p
⌧(✓?

t

� 0), the less e↵ective the public information.

13The public information tells that ✓
t

� 0 and the preferred regime will materialize i↵ ✓

t

� ✓

?

t

. The distance
✓

?

t

� 0 can measure the e↵ectiveness of public information when there is no private information. With noisy private
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Lemma 3 For any t = 1, 2 . . . T , h
t

(✓⇤
t

)� h
t

(0)  ✓⇤
t

� 0.

Optimal Policy

Instantaneous information provides a lower bound to the e↵ectiveness of the public information of

survival when agents gather information ex-ante. Thus, it is easier to achieve the first best uniquely

through di↵usion when agents gather information ex-ante.

Theorem 2 When agents gather information only at the beginning and the designer di↵uses the

coordination risk Theorem 1 holds true.

2.3 Alternative Interpretation of Di↵usion

Suppose a mass of agents is uniformly spread over a time interval [0, 1] and makes their decision

sequentially. If they have no information about what other agents are doing, then this is exactly a

simultaneous move game. One can also interpret di↵usion as the designer deciding to check whether

the preferred regime is still viable or not at certain dates. The policy is publicly known, and the

results from the checking will be publicly disclosed. If at some date it is revealed that the preferred

regime is not viable, then the game stops. The game continues only if the preferred regime is

still viable. Agents can either learn the fundamental strength only once at the beginning (ex-ante

information-gathering), or they can learn the residual fundamental strength privately on the dates

when the preferred regime is being checked (instantaneous information-gathering). A partition

(↵1,↵2, . . . ,↵T

) is equivalent to saying that (after the initial checking at time 0) the designer will

check after ↵1 time passes by, then after another ↵2 time passes by, and so on. Di↵usion by checking

the availability of the preferred regime is equivalent to making a partition of agents.

When agents are instantaneous information-gatherers, our Theorem 1 (or Theorem 2 for ex-ante

information) states that if the designer can check su�ciently frequently (i.e., the time span between

any two adjacent checking dates is shorter than ↵?), then the preferred regime will materialize for

sure as long as the strength is non-negative. Suppose, for some external reasons, that the designer

cannot perform the checking at certain intervals of time, and the first best cannot be implemented

information, the more precise the private information, the less e↵ective is the public survival news. Thus,
p
⌧(✓?

t

�0)
can measure the e↵ectiveness of public survival news.
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as the unique equilibrium. Based on our Theorem 4, the cautious designer should always check as

frequently as she can when agents are gathering information instantaneously.

When an agent’s action is divisible, the designer can also di↵use coordination by restricting

individual action at any time interval and thus restrict the aggregate action. Consider, for example,

investors deciding whether to withdraw their investment. The designer sets a limit on how much

they can withdraw in any time interval. Thus, a policy (↵1,↵2, . . . ,↵T

) is equivalent to saying that

the designer restricts the maximum withdrawal an agent can make in the time interval of [0,↵1] to

be ↵1 share of the total funds, with (↵1,↵1 + ↵2] to be ↵2 and so on. In the next section, we will

consider this type of di↵usion with ex-ante information-gathering in the context of a self-fulfilling

bank run model. We will show that di↵using coordination could help to avoid such runs.

3 Avoiding Panic-Based Runs

3.1 Panic-Based Bank Runs

The demand-deposit contract allows a bank to pool depositors’ savings together to finance long-

term, profitable investments and, at the same time, to fulfill the depositors’ liquidity needs. How-

ever, the demand-deposit contract is prone to panic-based runs (see Diamond and Dybvig (1983)).

Banks may not be able to a↵ord to pay all early withdrawals because of their illiquid investments.

Impatient depositors who have liquidity needs will withdraw before the long-term investment ma-

tures, while patient depositors may withdraw if they expect the marjority of other depositors will

run. Hence, the panic-based bank run is nothing but a coordination failure among patient depositors

(see Goldstein and Pauzner (2005)). In this section, based on our theory of di↵using coordination

risk, we propose a mechanism to make demand-deposit contracts immune to such panic-based runs.

We show that if a bank can make a su�ciently small withdrawal limit of a depositor’s decision,

then the partially suspended demand-deposit contract could completely avoid panic-based runs.

Following Goldstein and Pauzner (2005), we first present the simplest model of panic-based

bank runs, where depositors are making their decisions simultaneously.14 Depositors are uncertain

about their liquidity needs. They may receive the liquidity shock so that they have to make early

withdrawals. There is no aggregate uncertainty about the liquidity shock, and depositors know

14Equivalently, depositors can make decisions sequentially, but there will be no additional information available
about earlier depositor’s actions.
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that they are equally likely to be (im)patient. We assume there is measure 1 of depositors who

will be (im)patient after the liquidity shock realizes. Depositors are risk-neutral, and each made

a $1 deposit in the bank. The bank makes an investment in a profitable, long-term investment,

which produces a riskless return R. Before the return from the long-term investment realizes,

depositors decide whether to withdraw their deposits early (a
i

= 0) or not (a
i

= 1). The long-

term investment cannot be reversed, and the bank has limited liquidity 1 + ✓ to meet the early

withdrawals. Depositors learn whether they have liquidity needs before they make their withdrawal

decisions. They also receive noisy private information regarding the bank’s liquidity. The measure

1 of impatient depositors will withdraw independent of their information about the bank’s liquidity,

but there are strategic uncertainties among patient depositors. Denote w as the measure of patient

depositors who decide to withdraw. If the total withdrawal (1 +w) is not higher than the liquidity

of the bank (1 + ✓), the long-term investment will succeed. Those who do not withdraw will earn

an interest of r and those who withdraw will receive their principals back. If the total withdrawal

is higher than the liquid asset holding, the bank will have to liquidate the long-term investment at

a fire sale price, and the liquidation value will be paid out pro rata to depositors. Depositors who

didn’t withdraw will have nothing left. In our analysis, we worked with the extreme case where

the fire sale price is 0.15 This assumption simplifies the payo↵ structure, since being insolvent is

equivalent to bankrupcty. The details of payo↵ for patient depositors are as follows.

u(1, w, ✓) =

8
><

>:

1 + r if w  ✓

0 if w > ✓

, u(0, w, ✓) =

8
><

>:

1 if w  ✓

✓+1
w+1 if w > ✓

(10)

Notice that when ✓ � 0, the bank is financially sound. Its liquidity 1+✓ is su�cient to pay the early

withdrawals from impatient depositors, and its revenue from the long-term investment is su�cient

to pay patient depositors (i.e., R > 1 + r). The bank run can happen only if there are su�ciently

many patient depositors who decide to withdraw early. Note that, di↵erence to our basic model,

the strategic complementarity is weakened in the regime of default as in Goldstein and Pauzner

(2005). In the default regime, depositors have a lower incentive to withdraw if they believe more

depositors will withdraw. Under a similar setting, Goldstein and Pauzner (2005) showed that a

unique equilibrium exists in this coordination game, and the ex-ante probability of panic-based

15This assumption is not necessary for our mechanism to work. We prove our results for any non-positive and
bounded payo↵ di↵erence(b0 � c0 and b1 � c1).
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bank runs is non-negative.

Proposition 5 There exists �? > 0, such that when � < �?, a unique equilibrium exists (✓?, s?),

such that patient depositors will withdraw if and only if s < s?, and the bank will default if and only

if ✓ < ✓?.

Suppose the bank is able to make a partition of a depositor’s withdrawal decisions. At any date

t 2 {1, 2, ..., T} before the long-term investment matures, the bank can restrict that each depositor

can, at most, withdraw ↵
t

of their total deposits. Notice that T is not a fixed number. For example,

the bank can restrict the total withdrawal on each day, every twelve hours or every hour. Depositors

can make a withdrawal at any time but only for a limited amount.

Assume that each impatient depositor’s liquidity need is uniformly distributed over time. Since
P

t=T

t=1 ↵t

= 1, each depositor actually has only one chance to make a decision for every cent of her

deposits in the bank. Further assume the withdrawal limit ↵
t

is uniform over t, i.e., ↵
t

= 1
T

. Under

this assumption, this di↵used deposit contract is still able to fulfill impatient depositors’ liquidity

needs, and they will withdraw the full amount (i.e., ↵
t

share of their deposits), at any time t.

Define l = 1+✓ as the liquid asset holding of the bank, which could be interpreted as returns from

some legacy assets or simply the cash held by the bank. Denote the share of patient depositors

withdrawing at time t as w
t

. Thus, the residual liquidity at time t is l
t

= 1 + ✓ �
P

t�1
u=1 ↵u

�
P

u=t�1
u=1 ↵

u

w
u

.
P

t�1
u=1 ↵u

and
P

u=t�1
u=1 ↵

u

w
u

are the withdrawals from the impatient depositors and

patient depositors before t, respectively. Define ✓
t

:= ✓ �
P

u=t�1
u=1 ↵

u

w
u

as the liquidity left to

withstand the patient depositors’ withdrawals from time t to T . If ✓
t

< 0, or l
t

=
P

T

u=t

↵
u

+ ✓
t

<
P

T

u=t

↵
u

, then the bank will not be able to meet the withdrawals from impatient depositors in the

future. Even if all patient depositors decide not to withdraw from t to T , the bank will default.

Before paying the withdrawers at time t � 1, the bank checks whether the current withdrawals

from patient depositors (↵
t�1wt�1) have exhausted all liquidity left for future withdrawals from

impatient depositors (✓
t�1 = l

t�1 �
P

T

u=t�1 ↵u

), i.e., ✓
t

< 0. If it is, the bank defaults for sure at

some date before the long-term investment matures, and thus the bank will liquidate all its assets

to meet its obligations. The bank will split its liquid assets to pay the time t � 1 withdrawers up

to the principal $1. Whatever is left will be distributed evenly to each depositor.16 Based on this

16The residual liquidity will be evenly distributed since each depositor has the same amount of deposits that she
has not yet made withdrawal decisions on. In the proof of Lemma 4, we show that the policy of distributing the
residual liquidity is irrelevant to a depositor’s withdrawal decision, as long as it does not depend on the amount the
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mechanism, depositors will understand publicly that ✓
t

� 0 whenever depositors need to make their

withdrawal decisions at time t.

Depositors are learning the liquidity of bank ✓ only once at the beginning (ex-ante information-

gatherer). They are risk-neutral, and there is no discounting. At any time t, the depositors will get

the amount of their withdrawal(s) back, as long as the bank can still withstand future withdrawals

from impatient depositors (i.e., ✓
t

� ↵
t

w
t

). Only if the bank can meet all withdrawals from time

1 to time T will depositors get paid for the amount depositors decide not to withdraw after the

long-term project matures. The details of payo↵ for depositors moving at time t are as follows.

u(1, ✓
t

,↵
t

w
t

, wt) =

8
><

>:

1 + r if ✓
t

� ↵
t

w
t

+ wt

0 if ✓
t

< ↵
t

w
t

+ wt

u(0, ✓
t

,↵
t

w
t

, wt) =

8
><

>:

1 if ✓
t

� ↵
t

w
t

min{
P

T

u=t

↵

u

+✓
t

↵

t

+↵
t

w

t

, 1} if ✓
t

< ↵
t

w
t

(11)

where wt =
P

u=T

u=t+1 ↵u

w
u

and wT = 0.

There is a continuum of patient depositors, and thus, any individual’s choice has no impact on

the aggregate outcome. The following Lemma shows that, at time t, depositors are making a binary

decision to maximize their expected payo↵.

Lemma 4 If the withdrawal limit at time t is ↵
t

and
P

T

t=1 ↵t

= 1, then she will withdraw �
t

2

{0,↵
t

}.

The payo↵ structure is slightly di↵erent from the model of di↵used coordination risk presented

in Section 2. In that model, the payo↵s depend on whether the fundamental strength can sustain

the aggregate attack. However, in this dynamic bank-run model, the payo↵ of withdrawing does

not depend on depositors’ future actions. This creates a higher incentive for depositors to with-

draw. However, depositors still have dynamic concerns, since the payo↵ of rolling over depends on

depositors’ future actions. The following theorem shows that by making a su�ciently fine partition

of depositors’ withdrawal decisions, panic-based bank runs can be avoided.

depositor decides to roll over before the default happens.
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Theorem 3 There exists T ? 2 N, such that 8T > T ?. If the withdrawal limit at any time t is 1
T

,

then the panic-based runs could be avoided as long as the bank has non-negative liquidity for patient

depositors, i.e., ✓ � 0.

The bank does not default at time t if ✓
t

� ↵
t

w
t

and it does not default after time t if ✓
t

�

↵
t

w
t

+wt. When no patient depositors withdraw at any time, these two criteria becomes identical.

Thus, the mechanism in Theorem 2 goes through in this context. Our mechanism does not restrict

a depositor’s ability to withdrawing her deposits before the return of long-term investment realizes.

Instead, it restricts depositors from rushing to the bank on any date but allows them to withdraw

gradually. Depositors can still take all of their money back within that period. This mechanism is

welfare-improving, since it avoids the costly liquidation of a profitable, long-term project.17

Green and Lin (2003) and Andolfatto et al. (2014) built on the idea of lining up a finite number

of depositors to reduce the uncertainties between them. However, their results rely on the perfect

observability and contractability of past actions and depositors’ types. Unlikely the mechanism

design problem where incentives are provided through payo↵, here incentives are provided through

information. Our mechanism is also related to the idea of preventing bank runs by the suspension

of convertibility. Panic-based bank runs could be avoided when complete suspension of convert-

ibility can be implemented (see Diamond and Dybvig (1983)). Ennis and Keister (2009) showed

that complete suspension of convertibility is not ex-post e�cient and thus not an ex-ante credible

commitment. Based on our theory, suspending withdrawals completely is not necessary to avoid

panic-based runs.

Redemption Gates

Money market funds are an important liquidity provider in the financial market (see Brunnermeier

(2009)). The 2008 collapse of the $62.5 billion Reserve Primary Fund caused a widespread run on

funds and helped freeze global credit markets. In order to make money market funds safer and more

stable, the Securities and Exchange Commission (SEC) allows boards of prime money market funds

17Suppose the depositors with liquidity needs are not distributed uniformly over the unit interval. In this case,
di↵using coordination risk will be costly for the agents who have liquidity needs. However, based on our optimal
mechanism to overcome rollover risk, if the depositors with liquidity needs can write contracts among themselves
(e.g., a depositor who needs the money early can write a contract with a depositor who will need the money later),
then di↵usion will not restrict an impatient depositor from fulfilling his or her liquidity needs.
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to impose redemption gates.18 Under certain conditions, prime money market funds can suspend

redemptions temporarily for a period of time. For instance, when such redemption gates have been

lifted, investors in a prime money market fund can, at most, withdraw 10% of their investment per

day for ten days. Hedge funds could also impose this type of policy at their own discretion. Could

this help to reduce the self-fulfilling runs on redemption? Based on our theory, if the money market

fund or hedge fund could adopt su�ciently small redemption gates, the coordination risk among

investors in their redemption could be avoided.19

3.2 Asynchronous Debt Structure

Coordination failure among creditors in rolling over debt could give rise to self-fulfilling debt runs.

This coordination risk in maturity mismatch problem was one of the main causes of the recent

financial crisis (Brunnermeier, 2009). In this subsection, we will show that a su�ciently asyn-

chronous debt structure could help in avoiding self-fulfilling debt runs. Suppose a borrower finances

a profitable, riskless, long-term investment project by issuing short-term debt. There is mass 1 of

creditors. Each of them made a loan of $1 to the borrower. The borrower has only limited liquid

assets (✓) to roll over withdrawals before the long-term investment matures.

Instead of issuing short-term debt with the same maturity, suppose the borrower is able to issue

debt with di↵erent maturity dates.20 For example, the profit of a long-term investment will be

realized in five years, while one-third of the debt matures in two and a half years, three years, and

four years, respectively. Let the debt structure be (↵1,↵2, . . . ,↵T

), such that the ↵
t

share of the

short-term debt will mature at time t 2 {1, 2, . . . , T} before the long-term investment matures. The

debt structure is such that all debt holders only have one chance to make rollover decisions.21 The

asynchronous debt structure is able to finance the investment, i.e.,
P

t=T

t=1 ↵t

= 1 and it is publicly

18See http://www.sec.gov/rules/final/2014/33-9616.pdf.
19For the signaling e↵ect of lifting redemption gates (about the liquidity of money market funds or the net present

value of their investment), See Section 5 for discussion.
20Why the borrower would use short-term financing in the first place is out of the scope of this study. We will

analyze how to design the structure of short-term debt to minimize the rollover risk (i.e., the coordination risk among
creditors). There could be many reasons for short-term financing to be superior to long-term financing. For example,
short-term financing could fulfill the liquidity needs of creditors (see Diamond and Dybvig (1983)); it could work as
a signaling tool when creditors have asymmetric information (see Flannery (1986)); it could work as a disciplining
device (see Calomiris and Kahn (1991)); or it may arise due to a contractual externality (see Brunnermeier and
Oehmke (2013))

21We are assuming that the initial debt contract does not specify the maturity date and creditors have been
assigned to one of these groups randomly. We are not modeling how credtors choose their maturity dates.
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announced. Creditors of debt maturing at time t decide whether to roll over their debt claim on

that date. If they decide to make withdrawals (a
i

= 0), they will get their principals $1 back

immediately if the borrower remains solvent. Otherwise, they will get paid pro rata by splitting the

borrower’s remaining assets ✓
t

evenly.22 If they decide to roll over their debt (a
i

= 1), they will get

paid on the next maturity date (after the long-term investment matures). They will get an interest

payment r only if the borrower met all withdrawals before the profit from the long-term investment

realizes. Otherwise, the debt holders who roll over will get nothing. The long-term investment has

a riskless return of R, which is high enough to pay back all debt claims and interest rates (i.e.,

R > 1 + r).

Denote w
t

as the share of group t creditors (holding debt that matures at time t) deciding to

withdraw. Then, we can define the residual liquidity as before: ✓
t

= ✓1�
P

u=t�1
u=1 ↵

t

w
t

. Creditors are

instantaneous information-gatherers. They have no prior knowledge about the borrower’s liquidity

position but learn the current standing of the borrower before they need to make their rollover

decision. However, if the borrower fails to meet the earlier withdrawals and thus liquidation takes

place, it will be publicly known, and all creditors who have not withdrawn their debts will end up

receiving nothing. Thus, group t creditors understand that the borrower successfully rolls over all

earlier withdrawals (✓
t

� 0) before they make their withdrawal decisions. The payo↵ structure is

as follows.

u(1, ✓
t

,↵
t

w
t

, wt) =

8
><

>:

1 + r if ✓
t

� ↵
t

w
t

+ wt

0 if ✓
t

< ↵
t

w
t

+ wt

, u(0, ✓
t

,↵
t

w
t

, wt) =

8
><

>:

1 if ✓
t

� ↵
t

w
t

max{ ✓

t

↵

t

w

t

, 0} if ✓
t

< ↵
t

w
t

(12)

where wt =
P

u=T

u=t+1 ↵u

w
u

and wT = 0.

There are three di↵erences between this asynchronous debt problem and the bank run model

presented in the previous subsection: (1) the borrower is making a partition of creditors instead

of restricting individual action; (2) the creditors are instantaneous information-gatherers instead

of learning the fundamental at the beginning; and (3) there are no impatient depositors who must

make withdrawals to fulfill their liquidity needs. We show in the following corollary that our optimal

22As in the bank run example, to simplify the model, we assume the liquidation value of the long-term investment
is zero. Based on this assumption, the borrower goes default upon liquidation.
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policy of di↵using coordination risk could work to avoid self-fulfilling debt runs.

Corollary 2 If the borrower can make the debt structure su�ciently asynchronous, the self-fulfilling

debt runs can be avoided.

The dynamic debt-run problem has been investigated by He and Xiong (2012). While they

focused on a time-varying fundamental problem with complete information, we investigated the

case with incomplete information and a fixed fundamental. Our work provides some rationale for

the debt structure with a fixed rollover frequency (i.e., debt is continuously retired at a constant

fractional rate), commonly assumed in the finance literature (see Leland (1998); He and Xiong

(2012)). This asynchronous debt structure is feasible for avoiding self-fulfilling debt runs in reality.

There is empirical evidence that the granularity of corporate debts has a lot of variation across

firms and across time (see Choi et al. (2014)).

4 Limited Di↵usion

Intra-group and Inter-group Coordination Risk

When coordination is di↵used, group t(1  t  T � 1) agents faces strategic uncertainties from

agents moving at t and agents moving afterwards (from t+ 1 to T ). We will call them intra-group

coordination risk and inter-group coordination risk respectively.

Given the equilibrium threshold (✓?
t

)t=T

t=1 , ✓
?

t

is a su�cient statistic for the coordination risk from

time t to T . Thus, the inter-group coordination risk for agents moving at any t(t < T ) is captured

by ✓?
t+1. The intra-group coordination risk for agents moving at time t is the residual risk, captured

by ✓?
t

� ✓?
t+1. The intra-group coordination risk captures the risk among group t agents such that,

if too much attack happened within time t, the residual fundamental left for agents moving later is

less than ✓?
t+1, i.e., ↵t

w
t

> ✓
t

� ✓?
t+1. In this case, the preferred regime will fail at sometime between

t and T .23 The preferred regime will materialize if and only if w
t

 ✓

t

�✓?
t+1

↵

t

. Thus, given ✓?
t+1, the

e↵ective fundamental strength for group t is
✓

t

�✓?
t+1

↵

t

.

Let P (T, (↵)) be the coordination risk given policy (T, (↵)). The designer chooses (T, (↵))

to minimize P (T, (↵)). Given the potential multiplicity of equilibria, we first need to define the

23Notice that only if the current attack ↵
t

w

t

is higher than ✓
t

, the preferred regime fails at time t and the game
will not enter into time t+ 1.
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objective function for the designer.

Lemma 5 (Milgrom and Roberts (1990)) When coordination risk is di↵used, the worst equilib-

rium( with highest coordination risk) and the best one (with lowest coordination risk) are both is in

monotone strategy.

Given any policy (T, (↵)), the best equilibrium is the monotone equilibrium with threshold funda-

mental (✓?l1 = 0 . . . , ✓?l
T

= 0). In this equilibrium, agents never attack preferred regime irrespective

of their private signals. Let {✓⇤h
t

(T, (↵))}T
t=1 be the maximum solution to 6. This is the worst

equilibrium. Let us define P (T, (↵)) := P (✓ < ✓⇤l1 (T, (↵))) and P̄ (T, (↵)) := P (✓ < ✓⇤h1 (T, (↵)))

corresponding to the best and the worst equilibrium respectively. Thus, given any policy (T, (↵)),

P̄ (T, (↵)) � P (T, (↵)) � P (T, (↵))

P is the prior belief of the designer.24

We can say that for any policy (T, (↵)), there is ✓⇤l1 (T, (↵)) and ✓⇤h1 (T, (↵)) such that : (1) If

✓ � ✓⇤h1 (T, (↵)) the preferred regime materializes irrespective of whatever equilibrium is played. (2)

If ✓ < ✓⇤l1 (T, (↵)) the preferred regime does not materialize irrespective of whatever equilibrium is

played and (3) if ✓ 2 [✓⇤l1 (T, (↵)), ✓
⇤h
1 (T, (↵))), there exists some equilibrium such that the preferred

regime does not materialize. A Cautious designer, or a max-min designer, who wants to minimize

the coordination risk anticipating the worst can happen (see Gilboa and Schmeidler (1989) for

max-min preference), will then minimize ✓⇤h1 (T, (↵)).

Interplay of Intra-group and Inter-group coordination risk

Given the inter-group coordination risk for group t, ✓⇤
t+1, agents in group t are essentially facing a

static coordination problem with e↵ective fundamental strength
✓

t

�✓⇤
t+1

↵

t

. If agents in group t have

not received the public information survival, the intra-group coordination risk does not depend

on the inter-group risk, i.e., ✓⇤
t

� ✓⇤
t+1 = ↵

t

p0. When agents receive public surivival news ✓
t

� 0,

agents understand that the e↵ective fudanmental is above � ✓

⇤
t+1

↵

t

.25 Thus, the lower the inter-

24We assume the designer shares the same prior as agents, or the policy cannot convey any additional information
to agents.

25In Equation (26), when ✓

?

t+1 >

1p
⌧

, the denominator is equal to 1 for any candidate solution
✓

?

t

�✓

?

t+1

↵

t

. Thus,

✓

t

� 0 is e↵ective only when ✓?
t+1  1p

⌧

. Ceteris paribus, decreasing ⌧ , or making the private information noisier,
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group coordination risk (✓?
t+1), the more e↵ective the public information in reducing the intra-group

coordination risk.

Corollary 3 For any group t 2 {1, 2, . . . T � 1} who has the public information ✓
t

� 0, the intra-

group coordination risk ✓?
t

� ✓?
t+1 (weakly) increases with the inter-group coordination risk ✓?

t+1.

26

When agents in group t face no inter-group coordination risk, i.e., ✓⇤
t+1 = 0, agents will ignore

their private information and never attack the preferred regime if the private information is su�-

ciently noisy(Lemma 1). What can we say, if there is positive inter-group coordination risk, i.e.,

✓⇤
t+1 > 0? The following corollary shows that when inter-group coordination risk is positive, so is

intra-group coordination risk (no matter how noisy the private information is). Hence, the public

survival news can be su�ciently e↵ective to persuade group t agents never to attack the preferred

regime only if there is no inter-group risk and the private information is su�ciently noisy.

Corollary 4 If ✓⇤
t

� ✓⇤
t+1 = 0, then ✓⇤

t

= ✓⇤
t+1 . . . = ✓⇤

T

= 0

Limited Di↵usion under Instantaneous Information

Suppose some agents are clumped together and the designer cannot separate them into di↵erent

groups. Recall that in Theorem 1, the optimal policy places a small enough (less than ↵⇤) mass

of agents in each group. What if when such policies are not feasible? We will call such situation

limited di↵usion. Multiple equilibria will arise and the first best is not the unique equilibrium. The

designer is assumed to be max-min or cautious. Does coordination risk decrease as the designer

di↵use the coordination risk more?

Lemma 6 A max-min designer weakly prefers a finer partition over a coarser one.27

Notice the above Lemma is applicable only for partitions that are comparable in the sense

whether one is finer than the other. Let Q be the set of all feasible partitions. Suppose (0.4, 0.6)

will enlarge the set of inter-group risk ✓?
t+1 where the public information can be e↵ective.

26 In the rest of the paper, we will focus on the worst equilibrium ✓

?h

t

whenever there are multiple equilibria. For
convenience, we will drop the superscript h from ✓

?h

t

.
27Define a block as a set of mutually exclusive sets in the partition. A partition Q1 is said to finer than partition

Q2 if every block in Q1 is contained in some block in Q2.
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and (0.5, 0.5) are two feasible partitions. This implies the lump of agents are not such that the

partition (0.4, 0.1, 0.5) is infeasible. Formally, we will assume the following

Assumption 1 If Q1, Q2 2 Q, then Q1 ^Q2 2 Q.28

Given assumption 1, we can say there is a finest partition in Q, which is ^
Q2QQ. Lemma 6 coupled

with assumption 1 implies that the max-min designer will di↵use the coordination risk as much as

possible.

Theorem 4 Suppose there is a max-min designer who has limited di↵usion power and the feasible

policy set Q satisfies assumption 1, then the designer’s optimal policy is the finest partition in Q.

Instantaneous information gathering seems an appealing assumption when di↵erent groups make

their decisions at di↵erent dates. However, this also means that the private information structure

is di↵erent comparing to the model of concentrated coordination risk. Next, we will consider the

case when di↵usion does not change the private information structure.

Limited Di↵usion under Ex-ante Information

We have seen that when the designer can di↵use the coordination risk enough, she can achieve the

first best as the unique equilibrium outcome. However, contrary to the conventional wisdom that

further di↵usion creates public survival news and induces lower coordination risk, we argue that

coordination risk is not decreasing in di↵usion. When agents are gathering information ex-ante, the

interpretation of public survival news (✓1 � h
t

(0)) depends on the equilibrium object h
t

. Any change

in the policy of di↵usion will a↵ect the monotone equilibrium (✓?
t

, s?
t

)t=T

t=1 and thus {h
t

(T, (↵))}T
t=1.

Let us think about a simple example to see why more di↵usion does not always reduce the

coordination risk. Suppose there are two alternative policies of di↵usion: a coarser partition (named

partition A) (↵, 1�↵) and a finer partition (called partition B) (�,↵��, 1�↵). 0 < � < ↵. Assume

partition B is not su�ciently fine to achieve the first best. Let us divide the first group in partition

A into two groups artificially as in B, i.e., (�,↵ � �, 1� ↵) and make the comparison accordingly.

The second group in B will attack less aggressively (compared to that in A) since they receive the

public survival news. However, unlike instantaneous information, this will reduce the e↵ectiveness

28
Q1 ^ Q2 is the meet of Q1 and Q2, which is the largest partition that refines Q1 and Q2, i.e., the blocks in

Q1 ^Q2 are all the nonempty intersections of a block from Q1 with a block from Q2.
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of the public survival news received by the third group in B, which implies the third group in B will

attack more aggressively (compared to A). Taking this into consideration, the second group in B

facing more inter-group coordination risk will attack more aggressively as well. The aggressiveness

of the second group will a↵ect the e↵ectiveness of the public information received by the third

group, which will a↵ect the inter-group risk faced by the second group and thus have an impact

on how aggressively they attack the preferred regime. This loop will continue. Thus the e↵ect

of additional public information of survival on coordination risk can go either way. Although this

e↵ect is ambiguous, we know from Lemma 3 that for any policy, the coordination risk will be weekly

below the coordination risk when agents are gathering information instantaneously. Note that these

upper bounds of the policies are comparable (see Lemma 6). Therefore, we can show that when the

coordination risk is su�ciently di↵used and agents are gathering information ex-ante, agents will

ignore their private information and never attack the preferred regime.

5 Discussions

We have presented a model where coordination risk is di↵used over time and show how it helps

in reducing coordination risk. We provide a practical application of this idea in preventing self-

fulfilling runs. Recall that, our optimal mechanism has been designed for two di↵erent environments:

instantaneous information (Theorem 1) and ex-ante information (Theorem 2). Here, we will discuss

some extensions which maybe relevant to either information structure or both.

5.1 Di↵usion without Noisy Private Information

In the benchmark model, if agent had no private information, then all agents favoring the preferred

regime and all agents attacking the preferred regime can both occur as equilibrium outcome.29 If in

addition agents learn publicly that ✓ � 0, then all agents attacking the preferred regime can still be

an equilibrium only if P (✓ � 1|✓ � 0)  p0, i.e., (1� p0)✓̄  1. Now suppose the coordination risk

has been di↵used. Agents in group T with e↵ective per capita fundamental ✓

T

↵

T

learns publicly that

✓
T

� 0. If ↵
T

is su�ciently small, or ✓̄(1�p0) > ↵
T

, then all agents at time T attacking the preferred

regime cannot be supported as an equilibrium. Thus, when coordination is su�ciently di↵used, i.e.,

29 Assume ✓̄ in the prior is su�ciently large and ✓ is su�ciently small.

29



↵
t

< ✓̄(1� p0) for all t, no one will attack the preferred regime. No matter how pessimistic agent’s

belief (however small ✓̄) is or how reluctant agents are willing to favor the preferred regime (however

large p0), as long as the designer can make group size ↵ su�ciently small, di↵usion could make the

first best the unique equilibrium.30

5.2 Informative Policy

In this paper, we have assumed that the designer share the same prior as the agents and she does

not have any additional information before she implements the policy. As we proposed, the designer

should commit to the policy of di↵using coordination risk ex-ante. Therefore, the policy does not

convey any information about the fundamental. However, in reality policy maker may adopt this

type of policy only when her preferred regime is relatively weak. In that case, we cannot ignore the

signaling e↵ect of the policy itself since the policy could be informative about the fundamental. In

the recent sovereign debt crisis in Greece, Greece government imposes very strict withdrawal limit

for households. depositors could learn that the bank only has very limited liquid assets or cash to

meet its obligations. Can di↵usion still help reducing the coordination risk?

Proposition 6 If agents are gathering information ex-ante and the support of the uniform prior ✓

and ✓̄ depends on the policy (T, (↵)), the first best can be achieved uniquely if the policy of di↵usion

could make ↵
t

< min{↵?, ✓̄(T,(↵))

1+� } for all t 2 {1, 2, . . . , T}, where ↵? is as defined in Theorem 1.31

Thus, even if the policy itself could make agents more pessimistic about the preferred regime’s

strength, as long as ✓̄(T,(↵)) is decreasing slower than the rate of decrease in the group size when

the designer further di↵uses coordination, di↵using coordination risk could still help to avoid the

coordination risk.32

30In the section 2 where coordination risk is di↵used and agents have private noisy information, we assume that
agents have uninformative prior. Thus, the e↵ect of public survival news in making the prior more optimistic is
absent.

31We only work with the ex-ante information case to avoid the complication in updating informative prior when
agents get information instantaneously.

32Notice that when there is no di↵usion, or ↵1 = 1, ✓̄ > 1 + �. Consider the case where di↵usion is uniform, i.e.,
↵

t

= 1
T

, if ✓̄(T, (↵)) decreases at a slower rate than ↵
t

, then there exists ↵̃ > 0 such that when ↵
t

 ↵̃, ✓̄

↵

t

> 1 + �.
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5.3 Endogenous Information Gathering

Our mechanism relies on the fact that di↵usion dilutes private information. Suppose the precision

of private information is endogenous and depends on the policy. If agents get less precise private

information when the partition is finer, this makes our mechanism even more e↵ective in reducing

the coordination risk to zero.What if a di↵used policy design makes the agents access more precise

private information?

Suppose, ⌧
t

(T, (↵)) be the endogenously chosen precision of group t agents, given the policy

(T, (↵)). Suppose ⌧
t

(T, (↵)) is weakly higher for a finer partition. The following Proposition provides

su�cient conditions for our mechanism to work even if agents will access more precise information

when coordination risk is di↵used.

Proposition 7 If (1) ↵
t

p
⌧
t

(T, (↵)) falls as the partition becomes finer and (2) lim
↵

t

!0 ↵t

p
⌧
t

(T, (↵)) =

0, then the designer can achieve the first best by adopting a su�ciently di↵used policy.

From Proposition 7, we can see exactly how the di↵usion works in avoiding coordination risk.

As long as the precision of private information about the e↵ective fundamental (↵
t

p
⌧
t

) decreases

with the group size ↵
t

, our optimal policy is su�ciently e↵ective to avoid coordination risk.

5.4 General Equilibrium Concern

We have shown that su�ciently di↵used policy could implement the first best uniquely if the payo↵s

do not depend on the policy of di↵usion. Considering the incentive of agents before joining this

coordination game, e.g., depositing their funds in the bank, the di↵used policy itself will a↵ect the

endogenous risk faced by the agents and thus the payo↵s have to be adjusted to satisfy agents’

participation constraints. It is worthwhile to consider the incentive of depositors in a general

equilibrium framework. We will discuss this in the self-fulfilling bank model and we will show that

our theory for avoiding bank runs works with an endogenous price (interest rate).

Consider the di↵used structure (T, (↵)). As defined in Section 2, the probability of default is

P (T, (↵)) := P (✓ < ✓⇤1(T, (↵))). Suppose e is the depositor’s outside option, and r(T, (↵)) is the

interest rate. The participation constraint for the depositor can be written in form of

r(T, (↵)) � U(P (T, (↵)), e),
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in which U is increasing in P (T, (↵)) and e. To make the participation constraint satisfied, the

interest must be higher than the outside option, i.e., r(T, (↵)) > e. In equilibrium, the bank will

choose an optimal di↵used structure to maximize the expected profit by taking the depositor’s

participation constraint into consideration, i.e.,

max
(T,(↵))

⇧(P (T, (↵)), r(T, (↵))) s.t. r(T, (↵)) � U(P (T, (↵)), e))

The expected profit function ⇧ is increasing in P and decreasing in r. Note that, given any outside

option e, Theorem 3 shows that there exists T � T ?(e), such that the di↵used policy ↵
t

= 1
T

for all

t = 1, 2, . . . , T will make ✓? = 0. Hence, under this policy, P (T, (↵)) = 0 and r = e since there is

no risk of default. By this argument, for any outside option e, su�ciently di↵used policy will make

the first best implementable even if we consider the price is endogenously determined.

The intuition for this result is rather simple. The bank’s objective is still to minimize the risk

of a bank run. A lower probability of a bank run would not only increase the probability of earning

a positive profit but also increase the profit because the interest rate payment will be reduced.

5.5 Comparative Statistics: Financial Fragility

Following the discussion of preventing self-fulfilling debt runs, the proposed optimal mechanism

is still fragile in the face of some exogenous shocks.33 Suppose due to some exogenous reason,

the creditors start to actively gather more accurate private information about the fundamental. If

creditors have better information about the fundamental and about what other creditors will do, it is

harder for them to coordinate purely on the public survival news. As shown in the following corollary

5, debt crises may still happen when the borrower implements the pre-designed asynchronous debt

structure.

Corollary 5 ↵? is decreasing in ⌧ .

This is consistent with the explanation for a financial crisis by Gorton and Ordoñez (2014).

They argue that one potential trigger of a financial crisis could be that agents being more skeptical

33Suppose there are some negligible costs of di↵usion. The borrower will only set the group size into ↵? to avoid
any bank runs. For instance, there might be some issuance costs for each type of debt. One can interpret the cost
of di↵using the debt structure as the illiquidity discount, since more debt issues with smaller sizes will have a less
liquid secondary market than a few debt issues with larger sizes.
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about the underlying fundamental of the economy start to gather more precise information. In their

case, the crisis takes place because some low-quality projects with a positive net present value have

been screened out and cannot be financed. In our case, a crisis can take place because the public

survival news cannot overcome the coordination risk when creditors have more accurate private

information. Based on our theory, if the borrower can adjust the debt structure, she will adopt a

more asynchronous structure in facing such a shock.

5.6 General Dynamics of Fundamental

In certain dynamic coordination games, the dynamics of fundamental strength may not be lin-

ear. Consider the case that the residual fundamental is possibly a non-linear function of original

fundamental and previous attacks, i.e., ✓
t+1 = b(✓

t

,↵
t

w
t

). Intuitively, ✓
t+1 will increase with ✓

t

and decrease with ↵
t

w
t

. Therefore, the preferred regime can sustain attacks at time t only if

b(✓
t

,↵
t

w
t

) � 0. For example, in the static regime change model of Morris and Shin (1998) and

Iachan and Nenov (2014), regime change will not take place if b(✓, w) = g(✓) � w � 0. The fol-

lowing Proposition will show that our mechanism can work to avoid coordination risk with general

dynamics of fundamental satisfying assumption 2.

Assumption 2 The law of motion of fundamental ✓
t+1 = b(✓

t

,↵
t

w
t

) satisfies @b

@✓

t

� k1 > 0, � @b

@↵

t

w

t

�

k̄2 > 0 and b(0, 0) = 0

Proposition 8 Under general dynamics of fundamental satisfying assumption 2, Theorem 1 holds

true.

5.7 Heterogeneity

In this paper we analyze how a designer should partition a mass of identical agents. What will

the designer do if agents are heterogeneous in term of payo↵ incentive or in term of information

quality? Sakovics and Steiner (2012) considers a similar heterogeneous problem where the designer

decides which group to subsidize. Unlike them the designer does not provide monetary incentive

but rather decide the order in which she will let them make their decision.

Suppose there are two groups of equally informed agents. Group 1 is more reluctant to favor
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the preferred regime than group 2,34 i.e., p01 > p02. The designer decides whether to let a more

reluctant group or a less reluctant group first make their decision i.e., chose the order (1, 2) or (2, 1).

Or suppose, the two groups have same payo↵ but group 1 is more informed than group 2. Should

the designer let a more informed group or a less informed group first make their decision i.e., choose

the order (1, 2) or (2, 1)?

Proposition 9 Suppose the designer is max-min type and agents gather information instanta-

neously. There are two groups of agents {1, 2} of equal mass. For any group g 2 {1, 2}, the

precision of private signal is ⌧
g

and the minimum required probability of success to induce agents to

favor the preferred regime is p0g. Survival information is publicly available only to the group moving

later. Then,

1. (Information Heterogeneity) If ⌧1 > ⌧2 while p01 = p02 = p0 , then the designer should choose

the order (1, 2).

2. (Payo↵ Heterogeneity) If p01 > p02 while ⌧1 = ⌧2 = ⌧ , then the designer should choose the

order (1, 2) if and only if G
x

< 1.

Let  (k,m, y) be such that

G( (k,m, y),m, y) = k (13)

 (k,m, y) solves for the intra-group coordination risk when the inter-group coordination risk is y,

precision of private information is m and the minimum required probability of success to induce

agents to favor the preferred regime is k. When group 1 is more informed than group 2, choosing

the order (1, 2) means there is less inter-group risk (since less informed group will be a↵ected more

by the survival news). Without the public survival news at t = 1, the intra-group risk will remain

unchanged. Thus, the designer would let the more informed group first make their decision.35

When group 1 is more reluctant than group 2, choosing the order (1, 2) means less inter-group

risk but higher intra-group risk. When there is no survival news at t = 1, the changes in inter-

group risk does not a↵ect the intra-group risk faced by agents moving at t = 1. Thus, the optimal

34For example, some firms benefit more if the new technology is successfully adopted, which makes them less
reluctant to attack the new technology(preferred regime).

35 If the survival news is available at t = 1, when picking the order (1, 2), the public survival news at t = 1 will
be less e↵ective in reducing the intra-group risk although it could reduce the inter-group risk more. Whether the
survival news is more e↵ective in reducing the aggregate coordination risk depends on the cross partial derivatives
 

my

. Thus, generalization of this result will require the knowledge of cross partial derivatives of the solution.
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permutation depends on whether this reduction in inter-group risk outweighs the increase in intra-

group risk. G(.) captures the belief of the threshold agent in equilibrium and depends on the

distribution of noise F (.). G
x

= 1
 

k

captures how this belief changes as the threshold changes. Had

there been no survival information (at t = 1), this slope would be 1. Thus G
x

< 1 says that the

reduction in inter-group risk will outweigh the increase in intra-group risk. We can say a payo↵

incentive (reduction in p0) is more e↵ective in reducing the intra-group risk on later agents than

earlier agents if and only if  
k

> 1.

6 Conclusion

To conclude, this paper proposes a simple and feasible policy to avoid coordination risk. In a

noisy private information setting, we considered a special type of public information. The public

information shows that the designer’s preferred regime sustained all previous attacks. It is binary,

truth-telling, and generated naturally in the dynamic coordination game. We showed the e↵ect

of this public information on social learning. This public survival news always helps to reduce

the strategic uncertainties among agents. Di↵using is more than just a way to repeat the public

survival news. It strengthens the positive e↵ect from the public information in two ways. First,

di↵usion dilutes the private information and forces agents to coordinate more on the public good

news. Secondly, the intra-group coordination risk will be further reduced when agents moving earlier

face lower inter-group coordination risk. Agents will completely ignore their private information

and coordinate purely on the public survival news whenever their private information about the

e↵ective fundamental is su�ciently noisy and there is no inter-group coordination risk. To focus on

how di↵usion helps to reduce the coordination risk, we have abstracted some features from a more

general model. A more comprehensive analysis is needed to include issues such as reversibility of

action, other forms of information, or the informativeness of the policy itself. These are important

issues, and we leave them to future research.

Appendix

Proof of Proposition 1 This is an existing result and proof can be found in Morris and

Shin (2003). For the shake of completeness we reproduce the proof in the online appendix.
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Proof of Lemma 1 We will find the rationalizable strategy by iterated elimination of never

best response. The range of private signal is s 2 [S, S̄], where S := ✓� �

2 and S̄ := ✓̄+ �

2 . We start

from the worst possible scenario. Suppose agents attack the preferred regime irrespective of their

private information, i.e., s  s̄0 := S̄ and thus the preferred regime fails whenever ✓ < ✓̄0 := 1.

For any agent with information s, given the belief of s̄0 and ✓̄0 (others will not attack the preferred

regime only if s > s̄0 and the preferred regime will succeed only if ✓ � ✓̄0), the preferred regime

succeeds with probability P (✓ � ✓̄0|s, ✓ � 0). Let s̄1 be such that when s = s̄1 the agent believes

that the preferred regime succeeds with probability p0.

P (✓ � ✓̄0|s̄1, ✓ � 0) =
F ( s̄1�✓̄0

�

)

F ( s̄1
�

)
= p0. (14)

Thus, attacking the preferred regime when s > s̄1 is never a best response. Anticipating the

worst possible case under the belief of s̄0 and ✓̄0, agents take action to favor the preferred regime

only if s > s̄1. Thus, the preferred regime succeeds only when ✓ � ✓̄1 where ✓̄1 is defined as

P (s  s̄1|✓̄1) = ✓̄1 (15)

Before proceeding to the next round of eliminating, we can show that s̄1 < s̄0. This follows from

the log-concavity of F .

@
F (

s̄1�✓̄0
�

)

F (
s̄1
�

)

@s̄1
=

f( s̄1
�

)f( s̄1�✓̄0
�

)

F 2( s̄1
�

)

 
F ( s̄1

�

)

f( s̄1
�

)
�

F ( s̄1�✓̄0
�

)

f( s̄1�✓̄0
�

)

!
> 0

F (
s̄1�✓̄0

�

)

F (
s̄1
�

)
is increasing in s̄1 with lim

s̄1!s

F (
s̄1�✓̄0

�

)

F (
s̄1
�

)
= 0 and lim

s̄1!s̄

F (
s̄1�✓̄0

�

)

F (
s̄1
�

)
= 1. Thus, there exists

a unique solution of s̄1 2 (s, s̄). Solving s̄1 from Equation (15), s̄1 is an increasing function of ✓̄1,

i.e., s̄1 = ✓̄1 + �F�1(✓̄1). Since s̄1 < s̄0 and s̄0 = ✓̄0 + �F�1(✓̄0), ✓̄1 < ✓̄0 = 1.

Based on the updated belief of s̄1 and ✓̄1, define s̄2 such that the agent with signal s = s̄2 believes

✓ > ✓̄1 with probability p0. Hence, agents attacking the preferred regime when s > s̄2 is a never

best response. For the threshold agent with s̄2, we have

P (✓ � ✓̄1|s̄2, ✓ � 0) =
F ( s̄2�✓̄1

�

)

F ( s̄2
�

)
= p0 (16)
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Comparing Equation (16) to Equation (14), s̄2 < s̄1 since ✓̄1 < ✓̄0 and
F ( s̄�✓̄

�

)

F ( s̄

�

)
is increasing in s̄.

Let ✓̄2 satisfies P (s  s̄2|✓̄2) = ✓̄2. ✓̄2 < ✓̄1 since s̄2 < s̄1.

Recursively, 8n � 2, given the updated belief of s̄
n

and ✓̄
n

, the worst possible case can be

characterized by s̄
n+1 and ✓̄

n+1, which satisfy the following two equations

F ( s̄n+1�✓̄n
�

)

F ( s̄n+1

�

)
= p0 (17)

✓̄
n+1 = P (s  s̄

n+1|✓̄n+1) (18)

Solve for s̄
n+1 from Equation (18) and plug it into Equation (17), we have36

F ( ✓̄n+1�✓̄n
�

+ F�1(✓̄
n+1))

F ( ✓̄n+1

�

+ F�1(✓̄
n+1))

= p0 (19)

After n rounds of iterated elimination of never best responses, the worst possible case is that

the preferred regime succeeds only when ✓ � ✓̄
n

. Inductively, the sequence {✓̄
n

}1
n=0 is decreasing

and bounded below by 0. Hence the limit exists and it is the infimum of the sequence. If we prove

that for su�ciently large �, inf ✓̄
n

= 0. The preferred regime will succeed only when ✓ � 0 and the

preferred regime will fail only when ✓ < 0. Suppose, for contradiction, for some su�ciently large �,

inf ✓̄
n

= b > 0.

8⇣ > 0, 9N > 0, 8n � N, ✓̄
n

2 [b, b + ⇣]. Thus, both ✓̄
n

and ✓̄
n+1 are in [b, b + ⇣]. The LHS of

Equation (19) is increasing in ✓̄
n+1 and decreasing in ✓̄

n

as

@
F (

✓̄

n+1�✓̄

n

�

+F

�1(✓̄
n+1))

F (
✓̄

n+1
�

+F

�1(✓̄
n+1))

@✓̄
n+1

=
1
�

+ 1
f(F�1(✓̄

n+1))

F 2( ✓̄n+1

�

+ F�1(✓̄
n+1))f(

✓̄

n+1�✓̄n
�

+ F�1(✓̄
n+1))f(

✓̄

n+1

�

+ F�1(✓̄
n+1))

⇥
 
F ( ✓̄n+1

�

+ F�1(✓̄
n+1))

f( ✓̄n+1

�

+ F�1(✓̄
n+1))

�
F (( ✓̄n+1

�

+ F�1(✓̄
n+1))

f( ✓̄n+1�✓̄n
�

+ F�1(✓̄
n+1))

!
> 0

36Notice that ✓  ✓̄ can be taken as another piece of public information. Taking this piece of public information

into consideration, Equation (17) can be written as P (✓ > ✓̄

n

|s̄
n+1, 0  ✓  ✓̄) =

F (
s̄

n+1�✓̄

n

�

)��F (
s̄

n+1�✓̄

�

)

F (
s̄

n+1
�

)�F (
s̄

n+1�✓̄

�

)
= p0.

Combine this with Equation (19), we have
F (

✓̄

n+1�✓̄

n

�

+F

�1(✓̄
n+1))�F (

✓̄

n+1�✓̄

�

+F

�1(✓̄
n+1))

F (
✓̄

n+1
�

+F

�1(✓̄
n+1))�F (

✓̄

n+1�✓̄

�

+F

�1(✓̄
n+1))

= p0. Because we assume the

prior is uninformative, i.e., ✓̄ > 1 + � and ✓̄
n+1 2 [0, 1], we have 0  F ( ✓̄n+1�✓̄

�

+ F

�1(✓̄
n+1))  F (�1 + F

�1(1)) =
F (�1 + 1

2 ) = 0. Thus, the assumptions on F and ✓̄ > 1 + � guarantee that we can ignore the public information
✓  ✓̄.
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Thus,

min

 
F ( ✓̄n+1�✓̄n

�

+ F�1(✓̄
n+1))

F ( ✓̄n+1

�

+ F�1(✓̄
n+1))

!
=

F (�⇣
�

+ F�1(b))

F ( b

�

+ F�1(b))
(20)

Notice that
F (�⇣

�

+F

�1(b))

F ( b

�

+F

�1(b))
is continuously increasing in � and

lim
�!1

F (�⇣
�

+ F�1(b))

F ( b

�

+ F�1(b))
= 1

Hence, there exists �⇤ such that for all � > �⇤, 8✓̄
n

2 [b, b+ ⇣] and 8✓̄
n+1 2 [b, b+ ⇣],

F ( ✓̄n+1�✓̄n
�

+ F�1(✓̄
n+1))

F ( ✓̄n+1

�

+ F�1(✓̄
n+1))

� min

 
F ( ✓̄n+1�✓̄n

�

+ F�1(✓̄
n+1))

F ( ✓̄n+1

�

+ F�1(✓̄
n+1))

!
> p0

Hence, contradiction and ✓? = 0.⇤

Proof of Monotone Equilibrium Proposition 2 and 3 and 4 characterizes the monotone

equilibrium under slightly di↵erent settings. The proofs are very similar. We will provide the proof

for prop 3 here. Proof of Proposition 2 is a special case of this. Proof of 4 can be found in the

online appendix.

Let (✓⇤
t

, s⇤
t

)T
t=1 be the equilibrium threshold. Let us define the net payo↵ from favoring the

preferred regime to attacking it (when an agent gets a signal s and it is commonly known that

✓
t

� 0) as follows:

 (s, ✓⇤
t

) = (b1 � c1 + b0 � c0)P (✓
t

� ✓?
t

|s, ✓
t

� 0)� (b0 � c0)

Proof of Proposition 2 and 3

If agents gather information instantaneously, P (✓
t

� ✓?
t

|s, ✓
t

� 0) = P (✓
t

�✓⇤
t

|s)
P (✓

t

�0|s) = F (
p
⌧(s�✓⇤

t

))
F (

p
⌧s) .

Let s⇤
t

(✓⇤
t

, ✓⇤
t+1) be the threshold signal such that if agents will not attack the preferred regime i↵

s
t

� s⇤
t

(✓⇤
t

, ✓⇤
t+1), then ✓t � ↵

t

w(✓
t

) + ✓⇤
t+1 i↵ ✓

t

� ✓⇤
t

. Therefore,

s⇤
t

(✓⇤
t

, ✓⇤
t+1) = ✓⇤

t

+
1p
⌧
F�1(

✓⇤
t

� ✓⇤
t+1

↵
t

)

Define the net payo↵ from taking an action to favor the preferred regime, for the threshold

38



agent who gets the signal s⇤
t

(✓⇤
t

, ✓⇤
t+1) and it is publicly known that ✓

t

� 0 as follows:  (✓⇤
t

, ✓⇤
t+1) =

 (s⇤
t

(✓⇤
t

, ✓⇤
t+1), ✓

⇤
t

). Notice that by definition ✓?
t

2 [✓?
t+1,

P
T

u=t

↵
t

] . In equilibrium, there are three

cases: 1. 9✓?
t

2 (✓?
t+1,

P
T

u=t

↵
t

),  (✓⇤
t

, ✓⇤
t+1) = 0 ; 2.  (✓⇤

t

, ✓⇤
t+1) > 0 for all ✓?

t

2 [✓⇤
t+1,

P
T

u=t

↵
t

] , i.e.,

✓⇤
t

= ✓⇤
t+1; 3.  (✓

⇤
t

, ✓⇤
t+1) < 0 for all ✓?

t

2 [✓⇤
t+1,

P
T

u=t

↵
t

], i.e., ✓⇤
t

=
P

T

u=t

↵
t

.

Case 1 gives us the recursive relation 6 for instantaneous information.

Case 2 can happen only when ✓?
t+1 = 0. If  (✓⇤

t

, ✓⇤
t+1) > 0 for all ✓?

t

2 [✓⇤
t+1,

P
T

u=t

↵
t

], ✓⇤
t

= ✓⇤
t+1

and s?
t

= ✓⇤
t

� 1
2

1p
⌧

. Under this case, if ✓?
t+1 > 0,P (✓

t

� ✓?
t

|s?
t

, ✓
t

� 0) = 0 and  (s?
t

, ✓⇤
t

) = �(b0�c0) <

0, which contradicts with  (✓⇤
t

, ✓⇤
t+1) > 0. Thus, ✓⇤

t

= ✓⇤
t+1 only if ✓?

t+1 = ✓?
t+2 = ... = ✓?

T

= 0. When

✓?
t+1 = 0, P (✓

t

� ✓?
t

|s?
t

, ✓
t

� 0) = 1 and  (✓⇤
t

, ✓⇤
t+1) > 0.

Case 3 cannot be an equilibrium. If  (✓⇤
t

, ✓⇤
t+1) < 0 for all ✓?

t

2 [✓⇤
t+1,

P
T

u=t

↵
t

], ✓⇤
t

=
P

T

u=t

↵
t

.

Since ✓⇤
t+1 

P
T

u=t+1 ↵u

,
P

T

u=t

↵

t

�✓⇤
t+1

↵

t

� 1 and s?
t

= ✓⇤
t

+ 1
2

1p
⌧

. This means that P (✓
t

� ✓?
t

|s?
t

, ✓
t

�

0) = 1, which contradicts with  (✓⇤
t

, ✓⇤
t+1) < 0.

Thus, a monotone equilibrium (✓?
t

, s?
t

)T
t=1 is such that for some t0 = 1, 2, . . . T + 1, ✓?

t

0 =

✓⇤
t

0+1 = . . . ✓⇤
T+1 = 0 and for t = 1, 2, . . . t0 � 1, ✓?

t

satisfies  (✓⇤
t

, ✓⇤
t+1) = 0 and s⇤

t

(✓⇤
t

, ✓⇤
t+1) =

✓⇤
t

+ 1p
⌧

F�1(
✓

⇤
t

�✓⇤
t+1

↵

t

) (Equation (6)).

Proof of Lemma 2

1. Since F (.) is continuously di↵erentiable, so is G(.).

2. Since F (.)  1, G(x,↵, k) � x. Since
p
⌧↵(x + k) � 0, we have G(x,↵, k)  1. Obviously

G(.) is decreasing in ↵. lim
x!1 G(x,↵) = 1

F ( 12+
p
⌧a⇥1)

= 1.

3. Notice that G(x = 1, a) = 1 > p0. Thus, x? < 1. If x? > 0, 9x1 2 (0, x?) such that G(x1, a) <

p0. Based on the continuity of G(x, a) in x and G(1, a) = 1 > p0, G(x?, a) = p0. Suppose

dG

dx

|
x=x

? > 0 is not true, then dG

dx

|
x=x

?  0. Since dG

dx

is continuous, dG

dx

|
x=x

?  0 obviously

contradicts with the fact that x? = max
x

{x 2 [0, 1]|G(x, a)  p0} . The left is based on the

definition of x?.

⇤

Proof of Corollary 1 Suppose the di↵usion is (T, (↵)). At the last period T , in equilibrium,

(✓?
T

, s?
T

) satisfies P (✓
T

� ✓⇤
T

|s⇤
T

) = p0, ↵T

P (s
T

 s⇤
T

|✓⇤
T

) = ✓⇤
T

. Hence, the unique equilibrium is

✓⇤
T

= ↵
T

p0. Similarly, for t < T , we have ✓?
t+1 � ✓⇤

t

= ↵
t

p0. By induction, we have ✓⇤1 = p0.
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Suppose T = 1 and there is public information ✓
t

� 0 in the model of concentrated coordination

risk, then the monotone equilibrium (✓?, s?) satisfies G(✓⇤, 1) = p0 or ✓? = 0. Since G(✓⇤, 1) � ✓⇤

(see Lemma 2), we have ✓?  p0.

In the dynamic coordination model with T > 1. Starting from the last period T , it is easy

to see that
✓

?

T

↵

T

 p0, since G(
✓

⇤
T

↵

T

,↵
T

) � ✓

⇤
T

↵

T

= p0 or ✓?
T

= 0. Similarly, for t < T , we have

G(
✓

⇤
t

�✓⇤
t+1

↵

t

,
✓

⇤
t+1

↵

t

,↵
t

) � ✓

⇤
t

�✓⇤
t+1

↵

t

= p0. Or, we have ✓?
t

= ✓?
t+1 = ... = ✓?

T

= 0. Hence,
✓

?

t

�✓?
t+1

↵

t

 p0.

Recursively, we have ✓?
t

 p0
P

u�t

↵
t

. Hence, we proved that ✓?1  p0, no matter which equilibrium

is selected. ⇤

Proof of Theorem 1 Recall G as defined in Equation (2). Let us define

x(↵) := arg min
x2[0,1]

G(x,↵
p
⌧)

y(↵) := G(x(↵),↵
p
⌧) (21)

By theorem of maximum we know y(↵) is well defined and it is continuous in ↵. 8↵1 < ↵2,

y(↵1) = G(x(↵1),↵1
p
⌧) > G(x(↵1),↵2

p
⌧) > G(x(↵2),↵2

p
⌧) = y(↵2). The first inequality comes

from the fact that G(x,↵
p
⌧) is decreasing in ↵ and the second one follows the definition of x(↵).

Hence, y(↵) is decreasing with ↵. y(0) = lim
↵!0 y(↵) = 1 > p0. If y(1)  p0 then 9↵⇤ > 0 such

that 8↵ < ↵?, 8x 2 [0, 1], G(x,↵
p
⌧) > p0. If y(1) > p0 then ↵⇤ = 1.

Based on Proposition 3, in equilibrium for group T either G(
✓

?

T

↵

T

,↵
T

p
⌧) = p0 or ✓⇤

T

= 0. If

↵
T

< ↵⇤ then min
✓

⇤
T

G(
✓

?

T

↵

T

,↵
T

p
⌧) > p0. Hence ✓?

T

= 0 is the unique equilibrium.

Based on recursive relation in Equation (6) and ✓?
T

= 0, group T � 1 agents are facing exactly

the same problem as agents in group T . Hence, G(
✓

?

T�1

↵

T�1
,↵

T�1
p
⌧) = p0 or ✓?

T�1 = 0. Thus, if

↵
T�1 < ↵⇤ then ✓⇤

T�1 = 0 is the unique equilibrium. Proceeding the same way if ↵
t

< ↵⇤ for all

t = 1, 2, . . . T then we have the unique equilibrium ✓⇤1 = 0. ⇤

Proof of Lemma 3 By definition f t�1(h
t

(✓⇤
t

)) = h
t

(✓⇤
t

)�
P

t�1
u=1 ↵u

F (
p
⌧(s⇤

u

�h
t

(✓⇤
t

))) = ✓⇤
t

and

f t�1(h
t

(0)) = h
t

(0)�
P

t�1
u=1 ↵u

F (
p
⌧(s⇤

u

�h
t

(0))) = 0. Therefore, h
t

(✓⇤
t

)�h
t

(0)�(
P

t�1
u=1 ↵u

(F (
p
⌧(s⇤

u

�

h
t

(✓⇤
t

)))�F (
p
⌧(s⇤

u

� h
t

(0))))) = ✓⇤
t

� 0. Notice that h
t

(✓⇤
t

) � h
t

(0) and thus F (
p
⌧(s⇤

u

� h
t

(✓⇤
t

)))�

F (
p
⌧(s⇤

u

� h
t

(0))) < 0 for all u 2 {1, 2, ..., t� 1}. Hence, h
t

(✓⇤
t

)� h
t

(0)  ✓⇤
t

� 0. ⇤
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Proof of Theorem 2

P (✓
T

� 0|s⇤
T

) = F

✓
F�1(

✓⇤
T

↵
T

) +
p
⌧(h

T

(✓⇤
T

)� h
T

(0))

◆

 F

✓
F�1(

✓⇤
T

↵
T

) + ↵
T

p
⌧
✓⇤
T

↵
T

◆
(using Lemma 3 )

The threshold agent believes that the preferred regime will succeed with probability

P (
✓
T

↵
T

� ✓⇤
T

↵
T

|s⇤
T

,
✓
T

↵
T

� 0) =

✓

⇤
T

↵

T

F
⇣
F�1(

✓

⇤
T

↵

T

) +
p
⌧(h

T

(✓⇤
T

)� h
T

(0))
⌘

�
✓

⇤
T

↵

T

F
⇣
F�1(

✓

⇤
T

↵

T

) + ↵
T

p
⌧
✓

⇤
T

↵

T

⌘

= G(
✓⇤
T

↵
T

,↵
T

p
⌧)

The rest of the proof is exactly same as the proof of Theorem 1. ⇤

Proof of Lemma 4 This follows from the linearity of the value function on the fraction an

agent withdraws. The detailed proof can be found in the online appendix. ⇤

Proof of Theorem 3 We will prove this Proposition in three steps. We will first prove our

Theorem 1 holds true with more general payo↵ structure with instantaneous information gathering.

Then we turn to the model with ex-ante information gathering, we will show Theorem 2 holds true

with more general payo↵ structure as well. In the end, we will show that our Theorem 2 holds

when agents with ex-ante information get paid immediately when they attack the preferred regime

and the payo↵ only depends on the whether the preferred regime can withstand the current attack.

This is exactly our Theorem 3.

Step 1: Under general payo↵ structure satisfying assumption 3.1 and 3.3, Theorem 1 holds

true.

At time t 2 {1, 2 . . . T} of the di↵used coordination risk model, suppose the player i’s payo↵

u depends on the her action a
it

, the current non-coordination ↵
t

w
t

, the future aggregate non-
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coordination wt ⌘
P

T

u=t+1 ↵u

w
u

and the current fundamental strength ✓
t

.

u(a
it

= 1, ✓
t

,↵
t

w
t

, wt) =

8
><

>:

b1(✓t,↵t

w
t

, wt) if ✓
t

� ↵
t

w
t

+ wt

c0(✓t,↵t

w
t

, wt) if ✓
t

< ↵
t

w
t

+ wt

u(a
it

= 0, ✓
t

,↵
t

w
t

, wt) =

8
><

>:

c1(✓t,↵t

w
t

, wt) if ✓
t

� ↵
t

w
t

+ wt

b0(✓t,↵t

w
t

, wt) if ✓
t

< ↵
t

w
t

+ wt

in which w
T+1 = wT = 0.

Assumption 3 The payo↵ satisfies the following properties

1. ū(✓
t

,↵
t

w
t

, wt) := b1(✓t,↵t

w
t

, wt)� c1(✓t,↵t

w
t

, wt) > 0 and u(✓
t

,↵
t

w
t

, wt) := c0(✓t,↵t

w
t

, wt)�

b0(✓t,↵t

w
t

, wt) < 0

2. (Monotonicity) b1(✓t,↵t

w
t

, wt), c1(✓t,↵t

w
t

, wt), b0(✓t,↵t

w
t

, wt), c0(✓t,↵t

w
t

, wt) are all non-decreasing

in ✓
t

and non-increasing in ↵
t

w
t

and wt.

3. (Boundedness) 0 < n < ū(.) < n̄ and 0 < m < �u(.) < m̄ in which m, m̄, n, n̄ are constants.

Proof. Let {✓?
t

, s?
t

}T
t=1 be the equilibrium thresholds. We begin our proof from the last period

and then complete it by backward induction. Let H(s
T

, s⇤
T

) be the payo↵ di↵erence when the agent

receiving s
T

and other agents follow the threshold rule s⇤
T

, as defined in Equation (32).

The distribution of w
T

is

P (w
T

 k|s?
T

, ✓
T

� 0) = P (F (
s?
T

� ✓
T

�
)  k|s?

T

, ✓
T

� 0)

=
P (✓

T

� s?
T

� �F�1(k))

P (✓
T

� 0)
=

k

F (
s

?

T

�

)

Based on Equation (34) in the proof of Proposition 1, we can write H(s?
T

, s⇤
T

) as follows

H(s?
T

, s?
T

) =
1

F (
s

?

T

�

)

ˆ
✓

?

T

0

ū(v(w
T

, s?
T

),↵
T

w
T

, wT = 0)dw
T

+
1

F (
s

?

T

�

)

ˆ
F (

s

?

T

�

)

✓

?

T

u(v(w
T

, s?
T

),↵
T

w
T

, wT = 0)dw
T

(22)
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in which v(w
T

, s?
T

) ⌘ s?
T

� �F�1(w
T

).

We need to show that if ↵
T

in the last period is small enough, then the only rationalizable action

for agents at t = T is not to attack the preferred regime. In other words, for any possible s?
T

and

✓?
T

satisfying ↵
T

P (s
T

< s?
T

|✓?
T

) = ✓?
T

, the net expected payo↵ H(s?
T

, s?
T

) � 0. Recall the net payo↵

can be written as Equation (22). Hence, it is su�cient to show that

ˆ
F (

s

?

T

�✓

?

T

�

)

0

ū(v(w
T

, s?
T

),↵
T

w
T

)dw
T

+

ˆ
F (

s

?

T

�

)

F (
s

?

T

�✓

?

T

�

)

u(v(w
T

, s?
T

),↵
T

w
T

)dw
T

� 0

for any s?
T

and ✓?
T

satisfying ↵
T

P (s
T

< s?
T

|✓?
T

) = ✓?
T

. We know that

´
F (

s

?

T

�✓

?

T

�

)

0 ū(v(w
T

, s?
T

),↵
T

w
T

)dw
T

+
´

F (
s

?

T

�

)

F (
s

?

T

�✓

?

T

�

)
u(v(w

T

, s?
T

),↵
T

w
T

)dw
T

> F (
s

?

T

�✓?
T

�

)⇥ n+
⇣
F (

s

?

T

�

)� F (
s

?

T

�✓?
T

�

)
⌘
⇥ (�m̄)

= F (
s

?

T

�✓?
T

�

)⇥ (n+ m̄)� F (
s

?

T

�

)⇥ m̄

Thus, it is su�cient to show that there exist ↵? 2 (0, 1) such that for any ↵
T

 ↵?, the following

inequality always hold for any ✓?
T

2 [0,↵
T

].

F (
s

?

T

�✓?
T

�

)

F (
s

?

T

�

)
=

✓

?

T

↵

T

F ( 1
�

✓?
T

+ F�1(
✓

?

T

↵

T

))
� p̄ =

m̄

n+ m̄
(23)

Equivalently, we need to show that 8x 2 [0, 1]

G(x,↵
T

) =
x

F (
p
⌧↵

T

x+ F�1(x))
� p̄

Since wT�1 = w
T

= 0 is the unique equilibrium, agents moving at T � 1 are facing the same

problem as the last group. The rest of the argument follows from Theorem 1. Our payo↵ structure

in (11) satisfies assumption 3.1 and 3.3. All we need for this result is the boundedness of the payo↵

and not monotonicity.

Step 2: Under general payo↵ structure satisfying assumption 3.1 and 3.3, Theorem 2 holds

true.

Proof. With ex-ante information, we can still define the monotone equilibrium as {✓?
t

, s?
t

}T
t=1.
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For any monotone equilibrium, we can define h
t

(.) = (f t�1)�1(.) (f t�1 is defined in Equation (8)).

As in step 1, We first look at the last period problem and prove this by backward induction. Similar

to Equation (23), for ✓?
T

= 0 to be the unique equilibrium, it is su�cient to show that there exist

↵? 2 (0, 1) such that for any ↵
T

< ↵?, the following inequality always hold for any ✓?
T

2 [0,↵
T

].

F (
s

?

T

�h

T

(✓?
T

)
�

)

F (
s

?

T

�h

T

(0)

�

)
=

✓

?

T

↵

T

F ( 1
�

(h
T

(✓?
T

)� h
T

(0)) + F�1(
✓

?

T

↵

T

))
� p̄ (24)

From Lemma 3, we know that h
t

(✓⇤
T

)� h
t

(0)  ✓⇤
t

. Thus, we have

✓

?

T

↵

T

F ( 1
�

(h
T

(✓?
T

)� h
T

(0)) + F�1(
✓

?

T

↵

T

))
�

✓

?

T

↵

T

F ( 1
�

✓?
T

+ F�1(
✓

?

T

↵

T

))
(25)

The proof of step 1 shows that RHS of 25 is larger than p̄ when ↵
T

is su�ciently small. This

completes the proof of step 2.

Step 3: Theorem 3

Proof. It is a more complicated game comparing to the game in step 2. The criteria of success in

attacking(a
it

= 0): ✓
t

� ↵
t

w
t

+wt is di↵erent from the that in not attacking(a
it

= 1): ✓
t

� ↵
t

w
t

+wt.

We focus on the monotone equilibrium {✓?
t

, s?
t

}T
t=1. However, the subgame in period T is exactly

the same that in step 2 since wT = 0. We know that when ↵
T

is su�ciently small, ✓?
T

= w?

T

= 0

is the unique equilibrium. Now since wT�1 = w
T

= 0, the game in T � 1 is exactly as that in the

step 2. Thus, by backward induction, the unique equilibrium is ✓1 = 0 by restricting ↵
t

< ↵? for

all t 2 {1, 2, ..., T}.

Proof of Corollary 2 First, the payo↵ structure in (12) satisfies assumption 3.1 and 3.3. The

last period problem is exactly the same as the that in step 1 of Theorem 3. There exists ↵?(p0, ⌧)

such that when ↵
T

< ↵?, ✓?
T

= w
T

= 0 is the unique equilibrium. Notice that wT�1 = w
T

= 0. For

group T � 1 creditors, if the borrower can remain liquid at time T � 1, she can be liquid in the end.

Thus, they are facing exactly the same game as group T � 1 agents in the step 1 proof of Theorem

3. The same logic applies. By backward induction, ✓?1 = 0 is the unique equilibrium if ↵
t

< ↵? for

all t 2 {1, 2, ..., T}. ⇤
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Proof of Corollary 5 As defined in proof of Theorem 1, y(↵
t

) := min
x2[0,1] G(x,↵

t

) is de-

creasing with ↵
t

. Given ↵
t

, y(↵
t

) is decreasing with ⌧ . As ↵? := max{↵
t

|y(↵) � m̄

n+m̄

}, ↵? is

decreasing in ⌧ . ⇤

Proof of Lemma 5 This is a natural extension of Milgrom and Roberts (1990). The detailed

proof is in the online appendix. ⇤

Proof of Corollary 3 If public information of survival is available at time t, the equilibrium

threshold ✓?
t

(given ✓?
t+1) is the largest possible solution to the following equation

G(
✓?
t

� ✓?
t+1

↵
t

,↵
t

p
⌧ ,
✓?
t+1

↵
t

) =

✓

?

t

�✓?
t+1

↵

t

F (F�1(
✓

?

t

�✓?
t+1

↵

t

) + ↵
t

p
⌧
✓

?

t

�✓?
t+1

↵

t

+
p
⌧✓?

t+1)
= p0 (26)

According to Lemma 2, G is decreasing with ✓?
t+1 and increasing with

✓

?

t

�✓?
t+1

↵

t

. Thus,
✓

?

t

�✓?
t+1

↵

t

increases with ✓?
t+1. ⇤

Proof of Corollary 4 This follows from Proposition 3 (see case 2 in the proof of Proposition

3). ⇤

Proof of Lemma 6 Consider two policies: a more di↵used one (T, (↵1, ...,↵t

,↵
t+1,↵t+2, ...,↵T

))

and a less di↵used one (T � 1, (↵1, ...,↵t

+ ↵
t+1,↵t+2, ...,↵T

)). Notice that the former one has T

groups while the later one has T � 1 groups. We work with the case there the first best is not the

unique equilibrium with the coarser partition. If it is, according to Theorem 1, it is the unique

equilibrium with the finer partition as well. To prove that the designer weakly prefers the finer

partition, it is su�cient to show that the former one is associated with (weakly) lower coordination

risk (for the worst possible case).

Denote the worst possible equilibrium for the former one ✓?
F,t

and the later one ✓?
C,t

. If ✓?
F,1 < ✓?

C,1,

we can say more di↵usion always reduces the maximum possible coordination risk. We solve the

game by backward induction and thus it is easy to see that ✓?
F,t+2 = ✓?

C,t+1. Recall G(.) as defined

in Lemma 2. The equilibrium conditions are

G(
✓?
C,t

� ✓?
C,t+1

↵
t

+ ↵
t+1

, ✓?
C,t+1,↵t

+ ↵
t+1) = G(

✓?
F,t+1 � ✓?

F,t+2

↵
t+1

, ✓?
F,t+2,↵t+1) = p0
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Since G decreases with ↵, we have

G(
✓?
C,t

� ✓?
C,t+1

↵
t

+ ↵
t+1

, ✓?
C,t+1,↵t+1) > G2(

✓?
C,t

� ✓?
C,t+1

↵
t

+ ↵
t+1

, ✓?
C,t+1,↵t

+ ↵
t+1) = G(

✓?
F,t+1 � ✓?

F,t+2

↵
t+1

, ✓?
F,t+2,↵t+1)

Based on Lemma 2 and ✓?
F,t+2 = ✓?

C,t+1, we have
✓

?

F,t+1�✓
?

F,t+2

↵

t+1
<

✓

?

C,t

�✓?
C,t+1

↵

t

+↵
t+1

and thus ✓?
F,t+1 <

↵

t+1✓
?

C,t

�↵
t

✓

?

C,t+1

↵

t

+↵
t+1

. Similarly, we have

G(
✓?
C,t

� ✓?
C,t+1

↵
t

+ ↵
t+1

,
↵
t+1✓

?

C,t

+ ↵
t

✓?
C,t+1

↵
t

+ ↵
t+1

,↵
t

) = G(
✓?
C,t

� ✓?
C,t+1

↵
t

+ ↵
t+1

, ✓?
C,t+1,↵t

+ ↵
t+1)

= G(
✓?
F,t

� ✓?
F,t+1

↵
t

, ✓?
F,t+1,↵t

) > G(
✓?
F,t

↵
t

�
↵
t+1✓

?

C,t

+ ↵
t

✓?
C,t+1

↵
t

(↵
t

+ ↵
t+1)

,
↵
t+1✓

?

C,t

+ ↵
t

✓?
C,t+1

↵
t

+ ↵
t+1

,↵
t

)

Hence,
✓

?

F,t

↵

t

� ↵

t+1✓
?

C,t

+↵
t

✓

?

C,t+1

↵

t

(↵
t

+↵
t+1)

<
✓

?

C,t

�✓?
C,t+1

↵

t

+↵
t+1

and we proved that ✓?
F,t

< ✓?
L,t

. Obviously, ✓?
F,1 < ✓?

L,1. ⇤

Proof of Theorem 4 Given assumption 4, this directly follows from Lemma 6. ⇤

Proof of Proposition 6 If ↵
t

<
✓̄(T,(↵))

1+� , the prior of e↵ective fundamental is uninformative

and the proof follows the proof of Theorem 1 and 2. ⇤

Proof of Proposition 7 Following the proof of Theorem 1, x =
✓

?

T

↵

T

is the solution to the

following equation

G(x,↵) =
x

F (↵
p
⌧x+ F�1(x))

= p0

Recall y(↵) as defined in Equation (21). We can reduce ↵
T

by choosing a finer partition. The

condition that ↵
T

p
⌧
T

(↵, T ) falls as the partition becomes finer means y(↵
T

) decreases with ↵
T

, and

the condition lim
↵

T

!0 ↵T

p
⌧
T

(↵, T ) = 0 guarantees lim
↵

T

!0 y(↵T

) = 1. Since y(↵) is well defined

and continuous in ↵, we can find ↵?
T

(p0) such that 8↵
T

 ↵?
T

, 8x 2 (0, 1), G(x,↵
T

) > p0. Hence, the

first best equilibrium is the unique equilibrium of the subgame at time T. By backward induction, it

is easy to see that ↵
t

p
⌧
t

(T, (↵)) falls as the partition becomes finer and lim
↵

t

!0 ↵t

p
⌧
t

(T, (↵)) = 0

are su�cient conditions to guarantee Theorem 1 works. ⇤

Proof of Proposition 8 Similar to Proposition 3, we know that a monotone equilibrium

(✓?
t

, s?
t

)T
t=1 is such that for some t0 = 1, 2, . . . T+1, ✓?

t

0 = ✓⇤
t

0+1 = . . . ✓⇤
T+1 = 0 and for t = 1, 2, . . . t0�1,
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✓?
t

satisfies the following recursive equations:

✓?
t+1 = b (✓?

t

,↵
t

P (s
t

< s?
t

|✓?
t

)) (27)

P (✓
t

� ✓?
t

|✓
t

� 0, s?
t

) = p0 (28)

and s?
t

= ✓?
t

+ 1p
⌧

F�1(
✓

?

t

�✓?
t+1

↵

t

). At time T , from Equation (28), we have

F (
s?
T

� ✓?
T

�
) = p0F (

s?
T

�
)

It is easy to show that s?
T

increases with ✓?
T

and (s?
T

� ✓?
T

) decreases with ✓?
T

since

ds?
T

d✓?
T

=
f(

s

?

T

�✓?
T

�

)

f(
s

?

T

�✓?
T

�

)� p0f(
s

?

T

�

)
=

f(
s

?

T

�✓?
T

�

)

f(
s

?

T

�✓?
T

�

)� F (
s

?

T

�✓

?

T

�

)

F (
s

?

T

�

)
f(

s

?

T

�

)

> 0

d (s?
T

� ✓?
T

)

d✓?
T

=
�p0f(

s

?

T

�

)

f(
s

?

T

�✓?
T

�

)� p0f(
s

?

T

�

)
=

�p0f(
s

?

T

�

)

f(
s

?

T

�✓?
T

�

)� F (
s

?

T

�✓

?

T

�

)

F (
s

?

T

�

)
f(

s

?

T

�

)

< 0

Plug Equation (28) into Equation (27), we have

b

✓
✓?
T

,↵
T

F (
s?
T

� ✓?
T

�
)

◆
= b(✓?

T

,↵
T

p0F (
s?
T

�
)) = 0 (29)

Di↵erentiate b(✓?
T

,↵
T

p0F (
s

?

T

�

)) with respect to ✓?
T

, we have
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@✓
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@b

@✓
� (� @b

@w
)⇥ ↵

T

p0
1

�
⇥ f(

s?
T

�
)

1

1� F (
s

?

T

�✓

?

T

�

)

f(
s

?

T

�✓

?

T

�

)
/
F (

s

?

T

�

)

f(
s

?

T

�

)

Define L(✓?
T

) as

L(✓?
T

) ⌘ 1

1� F (
s

?

T

�✓

?

T

�

)

f(
s

?

T

�✓

?

T

�

)
/
F (

s

?

T

�

)

f(
s

?

T

�

)
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From the log-concavity of F, and the monotonicity of s?
T

and s?
T

� ✓?
T

on ✓?
T

, we know L(✓?
T

) is

decreasing in ✓?
T

. Hence, 8✓?
T

> 0, L(✓?
T

) < lim
✓

?

T

!0 L(✓?
T

) = lim
✓

?

T

!0
f(

s

?

T

�

)

f(
s

?

T

�

)�p0f(
s

?

T

�

)
= 1

1�p0
. We have

db

d✓?
T

|
✓

?

T

�0 =
@b

@✓
|
✓>0 � (� @b

@w
)|
w>0 ⇥ ↵

T

p0
1

�
⇥ f(

s?
T

�
)

1

1� F (
s

?

T

�✓

?

T

�

)

f(
s

?

T

�✓

?

T

�

)
/
F (

s

?

T

�

)

f(
s

?

T

�

)

� k1 � k̄2 ⇥ ↵
T

p0
1

�
⇥ f(

s?
T

�
) lim
✓

?

T

!0
L(✓?

T

)

� k1 � k̄2 ⇥ ↵
T

p0
1

�
⇥max

✓

?

T

f(
s?
T

(✓?
T

)

�
)

1

1� p0

f is bounded because F is continuously di↵erentiable,. There exists f̄ > 0 such that max
x2[� 1

2 ,
1
2 ]
f(x) 

f̄ . Thus, if ↵
T

< ↵? = k1�

k̄2f̄

1�p0

p0
,

db(✓?
T

,↵

T

P (s
T

<s

?

T

|✓?
T

))
d✓

?

T

> 0 holds for all ✓?
T

> 0. When ✓?
T

= 0,

b (0, 0) = 0. Thus, the only solution to Equation (29) is ✓?
T

= 0. Given the unique Bayesian Nash

Equilibrium at T is the ✓?
T

= 0, s?
T

= �1
2�, the problem at time T � 1 is exactly the same problem

as in time T. The argument will go backwards to t = 1. This completes this generalization.⇤

Proof of Proposition 9 The designer’s problem is to choose permutation (1, 2) or (2, 1)

to minimize the highest possible threshold ✓?h1 . Recall G(x,m, y) as defined in Equation (2) and

 (k,m, y) as defined in Equation (13).One can easily check that:  
k

= 1
G

x

> 0 (since we are

considering ✓⇤h, see Lemma 2),  
y

= �G

y

G

x

> 0 (since G
y

< 0) and  
m

= �G

m

G

x

> 0 (since G
m

< 0).

Let (t) denote the group moving at t = 1, 2. In equilibrium

✓⇤1 = ↵(1)p0(1) + ↵(2) (p0(1), 0,↵(2)
p
⌧(2)) (30)

Notice that when there is no survival news at t = 1, the intra-group risk facing the group moving at

t = 1, does not get a↵ected by the inter-group risk they are facing. The designer optimally chooses

permutation (1, 2) if ✓⇤1(1, 2) < ✓⇤1(2, 1) and vice versa.

Information Heterogeneity Given ⌧1 > ⌧2. From Equation (30)

✓⇤1(1, 2)� ✓⇤1(2, 1) =
p0
2

+
1

2
 (k, 0,

p
⌧2
2

)� p0
2

� 1

2
 (k, 0,

p
⌧1
2

) < 0

The last inequality holds since  
m

> 0.
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Payo↵ Heterogeneity Given p01 > p02. From equation 30 we see

✓⇤1(1, 2)� ✓⇤1(2, 1) =
1

2
[{p01 +  (k2, 0,

1

2

p
⌧)}� {p02 +  (p01, 0,

1

2

p
⌧)}]

=
1

2
[{p01 �  (k1, 0,

1

2

p
⌧)}� {p02 �  (p02, 0,

1

2

p
⌧})]

Define L(k) := 1
2 [k �  (k, 0, 12

p
⌧)]. We have L0(k) = 1 �  

k

. Note that  
k

= 1
G

x

captures how ✓⇤2

changes as p0 changes. When there is no public information of survival this e↵ect is 1. L0(k) < 0

i↵  
k

= 1
G

x

> 1, i.e., G
x

< 1. Hence, ✓⇤1(1, 2)� ✓⇤1(2, 1) < 0 i↵ G
x

< 1. ⇤
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Online Appendix

Proof of Proposition 1 (Morris and Shin (2003)) We are reproducing the MS result

here. Readers familiar with global game literature can skip this proof. We will consider a more

general payo↵ structure for this proof. The payo↵ specification we assume in the paper is a special

case of this. We will assume

Suppose the player i’s payo↵ is as follows

u(a
i

= 1, ✓, w) =

8
><

>:

b1(✓, w) if ✓ � w

c0(✓, w) if ✓ < w

, u(a
i

= 0, ✓, w) =

8
><

>:

c1(✓, w) if ✓ � w

b0(✓, w) if ✓ < w

Assumption 4 The payo↵ satisfies the following properties

1. b1(✓, w)� c1(✓, w) = ū(✓, w) > 0, c0(✓, w)� b0(✓, w) = u(✓, w) < 0

2. (Monotonicity) ū(✓, w) and u(✓, w) are non-decreasing in ✓ and non-increasing in w.

3. (Boundedness) 0 < n < ū(.) < n̄, 0 < m < �u(.) < m̄ in which m, m̄, n, n̄ are constants.

Assumption 4.1 and 4.2 capture the (monotonic) strategic complementarity. The incentive to

cooperate is non-decreasing in w, while the incentive to take attack is non-increasing in w. Based

on Assumption 3, the payo↵ di↵erences are bounded. The previous assumed payo↵ structure is a

special example of this more general one.

Given the private information s, the player will choose not to attack the preferred regime if she

believes the probability of success is su�ciently high, i.e.,

P (✓ � w|s) � b0(✓, w)� c0(✓, w)

b1(✓, w)� c1(✓, w) + b0(✓, w)� c0(✓, w)
=

1

1 + ū(✓,w)
�u(✓,w)

Define p̄ = max( �u

ū�u

) = m̄

n+m̄

and p = min( �u

ū�u

) = m

n̄+m

.

Suppose now (after n rounds of iterated elimination of dominated strategy) the upper dominance

region is s � s̄
n

. Notice that we can start the elimination since ✓̄ > 1 + �. Agents will not take the

attack if s � s̄
n

. Under the worst possible scenario (agents will not attack the preferred regime only

if s � s̄
n

), we can derive the next threshold s̄
n+1 as a function of s̄

n

. If the fundamental is higher

than ✓?(s̄
n

) = P (s < s̄
n

|✓?), the measure of attacks will be smaller than the fundamental ✓?(s̄
n

)
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and thus preferred regime will succeed. Based on the belief about s̄
n

, agents will never attack the

preferred regime if s � s̄
n+1, in which s̄

n+1 solves the P (✓ � ✓?(s̄
n

)|s̄
n+1) = p̄. From the definition

of ✓?(s̄
n

) and the above Equation for s̄
n+1, we have

�F�1(p̄) + ✓?(s̄
n

) = s̄
n+1, �F

�1(✓?(s̄
n

)) + ✓?(s̄
n

) = s̄
n

(31)

When n = 0, ✓?(s̄0) ⌘ 1. Since ✓?(s̄0) > p̄, we have s̄1 < s̄0 and thus ✓?(s̄1) < ✓?(s̄0). Recursively,

if ✓?(s̄
n

) < ✓?(s̄
n�1), then s̄

n+1 < s̄
n

and ✓?(s̄
n+1) < ✓?(s̄

n

). Given the decreasing sequence (s̄
j

)1
j=1

in the compact set [✓ � �

2 , ✓̄ +
�

2 ], there exist a limit for this sequence, s̄ ⌘ lim
j!1 s̄

j

. Similarly,

there is a upper bound for the lower dominance region, s ⌘ lim
j!1 s

j

.

By iterated elimination of dominated strategies, there exist s̄ and s such that the only rational-

izable action for any agent is never to favor the preferred regime when s  s̄ and never to attack

when s > s. Thus, the worst possible equilibrium could be that agents choose not to attack the

preferred regime if and only if s � s̄. Agents choose not to attack the preferred regime if and only

if s � s could constitute another equilibrium, or the best possible equilibrium. Thus, if s < s̄, there

are at least two monotone equilibria. We will proceed to prove that there is actually one unique

monotone equilibrium and it is the unique equilibrium for the coordination game.

Consider any possible monotone equilibrium (✓?, s?). For any agent i 2 [0, 1], given other agents

attack the preferred regime if and only if s
j

< s?(j 6= i), it is an equilibrium if she will take the same

strategy. We will construct equilibrium in this way and prove the uniqueness by showing there is a

unique solution to s?.

Given other agents are playing the threshold strategy s?, ✓? can be defined independent of agent

i’s strategy, i.e., ✓? = w(✓?) = F ( s
?�✓?
�

). The preferred regime succeeds if and only if the total

attack is less than the fundamental, i.e., w(✓, s?) = F ( s
?�✓
�

)  ✓ or equivalently ✓ � ✓?. Define

the function H(s
i

, s?) as the expected payo↵ di↵erence(from not attacking the preferred regime to

attacking) for agent i with private noisy signal s
i

H(s
i

, s?) ⌘
ˆ
✓�✓?

ū(✓, w(✓))dF (✓|s
i

) +

ˆ
✓<✓

?

u(✓, w(✓))dF (✓|s
i

) (32)

Agent i will take the threshold strategy s? if H(s?, s?) = 0. We want to show that there exists a

unique solution s? to H(s?, s?) = 0. Given s? and the realization of fundamental ✓, the total attack

is w(✓, s?) = F ( s
?�✓
�

). Thus, ✓ ⌘ v(w, s?) ⌘ s? � �F�1(w). w is uniformly distributed for the
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threshold player as

P (w  W ) = P (F (
s? � ✓

�
)  W ) = P (✓ � s? � �F�1(W )) = W

Transforming the integral from ✓ to w,

H(s?, s?) =

ˆ
✓�✓?(s?)

ū(✓, w(✓))dF (✓|s?) +
ˆ
✓<✓

?(s?)

u(✓, w(✓))dF (✓|s?) (33)

=

ˆ
w(✓?,s?)

0

ū(v(w, s?), w)dw +

ˆ 1

w(✓?,s?)

u(v(w, s?), w)dw (34)

If there are two di↵erent solutions to H(s?, s?) = 0, i.e., H(s?1, s
?

1) = H(s?2, s
?

2) = 0. W.L.O.G,

assume that s?1 > s?2. For any given w, v(w, s?1) > v(w, s?2), thus

ū(v(w, s?1), w) > ū(v(w, s?2), w) > 0 > u(v(w, s?1), w) > u(v(w, s?2), w)

We know that in equilibrium, w(✓?, s?) = F ( s
?�✓?
�

) = ✓?. w(✓?1, s
?

1) = ✓?1 > w(✓?2, s
?

2) = ✓?2 since

s?1 > s?2. Thus,

H(s?1, s
?

1)�H(s?2, s
?

2) =

ˆ
✓

?

2

0

(ū(v(w, s?1), w)� ū(v(w, s?2), w)) dw

+

ˆ 1

✓

?

1

(u(v(w, s?1), w)� u(v(w, s?2), w)) dw

+

ˆ
✓

?

1

✓

?

2

(ū(v(w, s?1), w)� u((v(w, s?2), w))) dw > 0

which contradicts with H(s?1, s
?

1) = H(s?2, s
?

2) = 0. From the proof, it is easy to see H(s?, s?) is

increasing in s? and thus there is a unique threshold equilibrium for this coordination game. We

have s̄ = s = s?. Not attacking the preferred regime if and only s � s? is the unique rationalizable

strategy based on iterated elimination of dominated strategy and this monotone equilibrium is

the unique equilibrium. The general payo↵ structure nests the case all payo↵s are constant only

depending on w S ✓. Thus, the proof of Proposition 1 is a special case for this general proof. ⇤

Proof of Proposition 4

If agents gather information ex-ante then P (✓
t

� ✓?
t

|s, ✓
t

� 0) = P (✓1 � h
t

(✓?
t

)|s, ✓1 � h
t

(0)) =
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F (
p
⌧(s�h

t

(✓⇤
t

)))
F (

p
⌧(s�h

t

(0))) . Notice that for instantaneous information this depends only on ✓⇤
t

but for ex-ante

information this depends on (✓⇤1, ✓
⇤
2, . . . ✓

⇤
t

) ⌘ ✓t⇤. When agents gather information ex-ante, let

s⇤
t

(✓t⇤, ✓⇤
t+1) be the threshold such that if agents will take not attack the preferred regime i↵ s �

s⇤
t

(✓t⇤, ✓⇤
t+1). ✓t � ↵

t

w(✓
t

) + ✓⇤
t+1 i↵ ✓1 � h

t

(✓⇤
t

). Therefore,

s⇤
t

(✓t⇤, ✓⇤
t+1) = h

t

(✓⇤
t

) +
1p
⌧
F�1(

✓⇤
t

� ✓⇤
t+1

↵
t

)

We can define  (✓t⇤, ✓⇤
t+1) =  (s⇤

t

(✓t⇤, ✓⇤
t+1), ✓

t⇤) for the ex-ante information case. Notice that in

equilibrium h
t

(✓⇤
t

) = ✓?1. Similar to the proof of instantaneous information gathering, a monotone

equilibrium (✓?
t

, s?
t

)T
t=1 is such that for some t0 = 1, 2, . . . T + 1, ✓?

t

0 = ✓⇤
t

0+1 = . . . ✓⇤
T+1 = 0 and for

t = 1, 2, . . . t0 � 1, ✓?
t

satisfies  (✓⇤
t

, ✓⇤
t+1) = 0 and s⇤

t

(✓⇤
t

, ✓⇤
t+1) = ✓⇤1 +

1p
⌧

F�1(
✓

⇤
t

�✓⇤
t+1

↵

t

) (Equation 9).

⇤

Proof of Lemma 5 We prove this in a bifurcated di↵usion with group size ↵1 and ↵2. This

result can be extended straightforwardly to any finite horizon dynamic coordination game.

The last group of agents are playing a static coordination game. As in the proof in Proposition

1, by iterated elimination of never best response, there exist s?h2 and s?l2 such that any rational agent

in group 2 will not take action 0 whenever s2 > s?h2 and will not take action 1 whenever s2 < s?l2 .

Accordingly, we can define the worst possible equilibrium (✓?h2 , s?h2 ) and best possible equilibrium

(✓?l2 , s
?l

2 ). Notice that both equilibrium are in monotone strategy and 0  ✓?l2  ✓?h2  ↵2.

Suppose equilibrium at period 2 tells that the preferred regime will materialize only if ✓2 � ✓̄?2

and will fail only if ✓2 < ✓?2. This equilibrium is not necessary in monotone strategy. We know that

0  ✓?l2  ✓?2  ✓̄?2  ✓?h2  ↵2. For group 1 agents, the preferred regime will materialize for sure if

✓1 � ↵1 + ✓̄?2 and the preferred regime will fail for sure if ✓1 < ✓?2. We have dominance regions for

group 1 agent’s action since 0  ✓?2  ✓̄?2  1�↵1 and the prior of ✓1 is U [✓, ✓̄](✓ < ��, ✓̄ > 1+�) is

uninformative. The rest of proof follows the static case (Proposition 1) where the upper dominance

region starts from ✓ � 1 and lower dominance region ✓ < 0.

There exit s̄?1(✓̄
?

2) and s?1(✓
?

2) such that any rational agent will not take action 0 if s1 > s̄?1(✓̄
?

2) and

will not take action 1 if s1 < s?1(✓
?

2). Given ✓̄?2 and ✓?2, we can define the best possible equilibrium

(✓̄?1, s̄
?

1) and worst possible equilibrium (✓?1, s
?

1) accordingly. They are both monotone equilibria. We

can define s̄1n(✓̄?2) as the maximum private information enables rational agents to take action 0
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after n rounds of iterated elimination. From Equation (31), if ✓̄?
0

2 > ✓̄?2, we have s̄11(✓̄?
0

2 ) > s̄11(✓̄?2)

and s̄1n is a non-decreasing function of s̄1,n�1. Thus, s̄1n(✓̄?
0

2 ) � s̄1n(✓̄?2) for all n. Hence, s̄?1(✓̄
?

2) =

inf
n!1 s̄1n(✓̄?2) is non-decreasing in ✓̄?2. Similarly, we can prove that s?1(✓

?

2) is a non-decreasing in ✓?2.

Consequently, (✓?h1 , ✓?h2 ) is worst possible equilibrium where agents in group 1(2) will favor the

preferred regime if and only if s1(2) � s̄?1(2)(✓
?h

2 ) and (✓?l1 , ✓
?l

2 ) is best possible equilibrium where

agents in group 1(2) will favor the preferred regime if and only if s1(2) � s?1(2)(✓
?l

2 ). ⇤

Proof of Proposition 5 (Goldstein and Pauzner (2005)) The proof of existence and

uniqueness is similar to the proof of Proposition 1. We will omit the iterated elimination of never

best responses and proceed to prove that if (✓?, s?) is a monotone equilibrium, then it is unique.

Given other agents are playing the threshold strategy s?, bank run will not happen if and

only if the total attack is less than the fundamental, i.e., w(✓, s?) = F ( s
?�✓
�

)  ✓ or equivalently

✓ � ✓? = F ( s
?�✓?
�

). Define the function H(s
i

, s?) as the expected net payo↵ from rolling over (a
i

= 1)

for agent i with private noisy signal s
i

H(s
i

, s?) ⌘
ˆ
✓�✓?

rdF (✓|s
i

) +

ˆ
✓<✓

?

� 1 + ✓

1 + w
dF (✓|s

i

)

Given s
i

= s?, the agent believes w is uniformly distributed. Agent i will take the threshold strategy

s? if H(s?, s?) = 0. We want to show that there exists a unique solution s? to H(s?, s?) = 0. Since

w(✓, s?) = F ( s
?�✓
�

), we have ✓ = s? � �F�1(w) and w? = ✓? satisfies ✓? + �F�1(✓?) = s?.

H(s?, s?) =

ˆ
w

?

0

rdw +

ˆ 1

w

?

�1 + s? � �F�1(w)

1 + w
dw = rw? �

ˆ 1

w

?

1 + s? � �F�1(w)

1 + w
dw

It is su�cient to show that H(s?, s?) is increasing in s?. We want to show that

dH(s?, s?)

ds?
= (1 + r)

dw?

ds?
� ln

2

1 + w?

= (1 + r)
1

1 + �

f(F�1(w?))

� ln
2

1 + w?

> 0

This is always true when � < ( 1+r

ln 2
1+w

?

� 1)f(F�1(w?)). Suppose f(x) is bounded away from 0 in

[�1
2 ,

1
2 ], i.e., 9⌘ > 0, f(.) � ⌘. Thus, we have H(s?, s?) is increasing in s?whenever � < �? =

(1+r

ln 2 � 1)⌘. It is easy to see that when s? = s̄ = 1 + �

2 , w
? = 1 and H(s̄, s̄) = r > 0 and when
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s? = s = ��

2 , w
? = 0 and H(s, s) < 0. Thus, when � < �?, there exists a unique equilibrium where

s? 2 (s, s̄) and ✓? 2 (0, 1). ⇤

Proof of lemma 4 At time T, if the bank did not default yet, depositors can make decision

for ↵
T

share of their deposits. When the private information about ✓
T

is s
T

, in case agent decide

to withdraw �
t

2 [0,↵
t

] amount, the value of of ↵
t

share deposit can be defined as following.

V (�
T

, s
T

, T ) = P (✓
T

� ↵
T

w
T

|s
T

, ✓
T

� 0)(�
T

⇥ 1 + (1� �
T

)(1 + r))

+P (✓
T

< ↵
T

w
T

|s
T

, ✓
T

� 0)�
T

min{ ↵
T

+ ✓
T

↵
T

w
T

+ ↵
T

, 1} (35)

Similarly, given the private information s
t

, the value of withdrawing �
t

from ↵
t

share of deposit at

time t 2 {1, 2, ..., T � 1} is

V (�
t

, s
t

, t) = max
�

t

2[0,↵
t

]
(1� �

t

)P (✓
t

�
TX

u=t

↵
u

w
u

|s
t

, ✓
t

� 0)(1 + r) + �
t

P (✓
t

� ↵
t

w
t

|s
t

, ✓
t

� 0)

+�
t

P (✓
t

< ↵
t

w
t

|s
t

, ✓
t

� 0)min{
P

T

u=t

↵
t

+ ✓
T

↵
t

w
t

+ ↵
t

, 1} (36)

We can write the problem faced by group t agent with private information s
t

is as following.

max
�

s

2[0,↵
s

]

(
E
"
T+1X

u=t

 
P
u

(s
t

)(
uX

s=t

V (�
s

, s
s

, s) + o
u

(✓
u

, w
u

))

!
|s

t

, ✓
t

� 0

#)
(37)

in which default happens at time t with probability P
u

(s
t

) := P
�
✓
t

2 [
P

u�1
s=t

↵
s

w
s

,
P

u

s=t

↵
s

w
s

)|s
t

, ✓
t

� 0
�

for u 2 {t+1, t+2, ..., T}.37 The probability of no default is P
T+1(st) := P

⇣
✓
t

2 [
P

T

s=t

↵
s

w
s

, 1]|s
t

, ✓
t

� 0
⌘
.

o
t

(✓
t

, w
t

) is the value of deposits that depositors have no chance yet to make withdrawal decisions

if bank defaults at time t. If the bank will distribute the residual liquidity evenly to all depositors,

o
t

(✓
t

, w
t

) = max{ ✓t+
P

T

u=t+1 ↵u

�↵
t

w

t

2 , 0}. By definition, o
T

(✓
T

, w
T

) = o
T+1(✓T+1, wT+1) = 0.

Notice that
P

T+1
u=t

P
u

(s
t

) = 1. We can rewrite 37 as

max
�

s

2[0,↵
s

]

(
E
"
V
t

(�
t

, s
t

, t) + P
t

(s
t

)o
t

(✓
t

, w
t

) +
T+1X

u=t+1

 
P
u

(s
t

)(
uX

s=t

V (�
s

, s
s

, s) + o
u

(✓
u

, w
u

))

!
|s

t

, ✓
t

� 0

#)

(38)

37The probability of having default at time t is P
t

(s
t

) := P (✓
t

2 [0,↵
t

w

t

)|s
t

, ✓

t

� 0).
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Since there are a continuum of patient depositors to make their withdrawal decisions, for any

individual, the choice of �
t

does not a↵ect any aggregate outcome for time t, or w
t

, and thus it has no

influence on the dynamics of fundamental or the realization of information. Hence, the optimization

problem in Equation (37) is separable. Notice that P
t

(s
t

)o
t

(✓
t

, w
t

) is independent of any individual’s

choice �
t

as well. Thus, the time t patient depositors will try to solve max
�

t

2[0,↵
t

] Vt

(�
t

, s
t

, t). From

36, V (�
t

, s
t

, t) is a linear function of �
t

since the choice of �
t

has no influence on the probabilities.

Assuming agents withdraw everything when they are indi↵erent between withdrawing and not

withdrawing, �
t

is either ↵
t

or 0. ⇤

Non-uniform Prior

We work with uninformative prior and general distribution of error. In applied work, it is conven-

tional to use Gaussian prior and error distribution for convenience. With instantaneous information,

relaxing the uninformative prior will introduce endogeneity and thus equilibrium cannot be solved

backwards. In the following Proposition, we will show that in a Gaussian information structure with

su�ciently uninformative prior, when agents gather information ex-ante, di↵usion could completely

avoid the coordination risk.

Proposition 10 Suppose ✓ ⇠ N(✓0, �02) and s|✓ ⇠ N(✓, �2), Theorem 2 holds true when �0 is

su�ciently high and some regularity conditions are satisfied.

Proof. Given prior ✓ ⇠ N(✓0, �2
0) and s ⇠ N(✓, �2), ✓|s ⇠ N( �

2
0

�

2+�2
0
s + �

2

�

2+�2
0
✓0,

�

2
0�

2

�

2+�2
0
) . The

monotone equilibrium is defined as in Proposition 4. Similar to Equation (9), in the last period, we

have

�(

�

2
0

�

2+�

2
0
���1(

✓

?

T

↵

T

)+ �

2

�

2+�

2
0
(✓0�h

T

(✓?
T

))

��0p
�

2+�

2
0

)

�(

�

2
0

�

2+�

2
0
���1(

✓

?

T

↵

T

)+ �

2

�

2+�

2
0
(✓0�h

T

(✓?
T

))+(h
T

(✓?
T

)�h

T

(0))

��0p
�

2+�

2
0

)

= p0, ✓
?

T

2 (0,↵
T

) (39)
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or ✓?
T

= 0. Because of the log-concavity of �38 and Lemma 3, i.e., h
T

(✓?
T

)� h
T

(0)  ✓?
T

, the LHS of

Equation (39) is greater than L(↵
T

,
✓

?

T

↵

T

, h
T

(0)), where L is defined as

L(↵, x, h) :=

�(

�

2
0

�

2+�

2
0
���1(x)+ �

2

�

2+�

2
0
(✓0�↵x�h(0))

��0p
�

2+�

2
0

)

�(

�

2
0

�

2+�

2
0
���1(x)+ �

2

�
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2
0
(✓0�↵x�h(0))+↵x)

��0p
�

2+�

2
0

)

Notice that L(↵
T

,
✓

?

T

↵

T

= 0, h
T

(0)) = L(↵
T

,
✓

?

T

↵

T

= 1, h
T

(0)) = 1 > p0 and L(↵
T

= 0,
✓

?

T

↵

T

, h
T

(0)) = 1.

To prove that ✓?
T

= 0 is the unique equilibrium, we only need to show that L(↵, x, h) is decreasing

in ↵. Assume that dh

T

(0)
d↵

T

is well defined and bounded.

dL(↵, x, h)

d↵
=

��0p
�

2+�2
0

�2(A)


�(B)�(A)k(�x� dh

d↵
)� �(A)�(B)(x� kx� k

dh

d↵
)

�

in which A =

�

2
0

�

2+�

2
0
���1(x)+ �

2

�

2+�

2
0
(✓0�↵x�h(0))+↵x)

��0p
�

2+�

2
0

, B =

�

2
0

�

2+�

2
0
���1(x)+ �

2

�

2+�

2
0
(✓0�↵x�h(0))

��0p
�

2+�

2
0

and k = �

2

�

2+�2
0
.

dL(↵,x,h)
d↵

< 0 is equivalent to have the following inequality for all x 2 (0, 1).

dh
T

(0)

d↵
>

0

@1

k

1h
1� �(B)

�(B)/
�(A)
�(A))

i � 1

1

Ax

Notice that because of log-concavity, 1

[1� �(B)
�(B)/

�(A)
�(A) )]

< 0. When �0 ! 1, k ! 0 and lim
�0!1 A =

lim
�0!1 B. Thus for any bounded dh

T

(0)
d↵

the above inequality is true. If dh

t

(0)
d↵

t

is well defined

bounded for all t, then Theorem 2 holds true when �0 is su�ciently large.

38Given F is log-concave and y  z, F (x+y)
F (x+z) is increasing in x since

d

F (x+y)
F (x+z)

dx

= F (x+y)
F (x+z) (

f(x+y)
F (x+y) �

f(x+z)
F (x+z) ) > 0.
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